Advertisement
Research Article| Volume 136, P90-99, June 2023

Download started.

Ok

Prediction model of central nervous system infections in patients with severe traumatic brain injury after craniotomy

Published:April 16, 2023DOI:https://doi.org/10.1016/j.jhin.2023.04.004

      Summary

      Background

      At present, central nervous system (CNS) infection in patients with traumatic brain injury is usually diagnosed according to the clinical manifestations and results of cerebrospinal fluid (CSF) bacterial culture. However, there are difficulties in obtaining specimens in the early stage.

      Aim

      To develop and evaluate a nomogram to predict CNS infections in patients with severe traumatic brain injury (sTBI) after craniotomy.

      Methods

      This retrospective study was conducted in consecutive adult patients with sTBI who were admitted to the neurointensive care unit (NCU) between January 2014 and September 2020. The least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression analysis were applied to construct the nomogram, and k-fold cross-validation (k = 10) to validate it.

      Findings

      A total of 471 patients with sTBI who underwent surgical treatment were included, of whom 75 patients (15.7%) were diagnosed with CNS infections. The serum level of albumin, cerebrospinal fluid (CSF) otorrhoea at admission, CSF leakage, CSF sampling, and postoperative re-bleeding were associated with CNS infections and incorporated into the nomogram. Our model yielded satisfactory prediction performance with an area under the curve value of 0.962 in the training set and 0.942 in the internal validation. The calibration curve exhibited satisfactory concordance between the predicted and actual outcomes. The model had good clinical use since the DCA covered a large threshold probability.

      Conclusion

      Individualized nomograms for CNS infections in sTBI patients could help physicians screen for high-risk patients to perform early interventions, reducing the incidence of CNS infections.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hospital Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chen M.
        • Soosaipillai A.
        • Fraser D.D.
        • Diamandis E.P.
        Discovery of novel plasma biomarker ratios to discriminate traumatic brain injury.
        F1000Res. 2019; 8: 1695
        • Hamed S.A.
        • Hamed E.A.
        • Zakary M.M.
        Oxidative stress and S-100B protein in children with bacterial meningitis.
        BMC Neurol. 2009; 9: 51
        • Coyle P.K.
        Overview of acute and chronic meningitis.
        Neurol Clin. 1999; 17: 691-710
        • Koedel U.
        • Klein M.
        • Pfister H.W.
        New understandings on the pathophysiology of bacterial meningitis.
        Curr Opin Infect Dis. 2010; 23: 217-223
        • Rohlwink U.K.
        • Figaji A.A.
        Biomarkers of brain injury in cerebral infections.
        Clin Chem. 2014; 60: 823-834
        • Zhan R.
        • Zhu Y.
        • Shen Y.
        • Shen J.
        • Tong Y.
        • Yu H.
        • et al.
        Post-operative central nervous system infections after cranial surgery in China: incidence, causative agents, and risk factors in 1,470 patients.
        Eur J Clin Microbiol Infect Dis. 2014; 33: 861-866
        • Kono Y.
        • Prevedello D.M.
        • Snyderman C.H.
        • Gardner P.A.
        • Kassam A.B.
        • Carrau R.L.
        • et al.
        One thousand endoscopic skull base surgical procedures demystifying the infection potential: incidence and description of postoperative meningitis and brain abscesses.
        Infect Control Hosp Epidemiol. 2011; 32: 77-83
        • Shi Z.H.
        • Xu M.
        • Wang Y.Z.
        • Luo X.Y.
        • Chen G.Q.
        • Wang X.
        • et al.
        Post-craniotomy intracranial infection in patients with brain tumors: a retrospective analysis of 5723 consecutive patients.
        Br J Neurosurg. 2017; 31: 5-9
        • Godoy D.A.
        • Lubillo S.
        • Rabinstein A.A.
        Pathophysiology and management of intracranial hypertension and tissular brain hypoxia after severe traumatic brain injury: an integrative approach.
        Neurosurg Clin N Am. 2018; 29: 195-212
        • Tattevin P.
        • Patrat-Delon S.
        • Le Ho H.
        Postoperative central nervous system infection after neurosurgical procedures: the bride is too beautiful.
        Clin Infect Dis. 2007; 45 (author reply 1248–9): 1248
        • Yu Y.
        • Li H.J.
        Diagnostic and prognostic value of procalcitonin for early intracranial infection after craniotomy.
        Braz J Med Biol Res. 2017; 50e6021
        • Andersson D.I.
        • Hughes D.
        Selection and transmission of antibiotic-resistant bacteria.
        Microbiol Spectr. 2017; 5
        • Ziai W.C.
        • Lewin 3rd, J.J.
        Improving the role of intraventricular antimicrobial agents in the management of meningitis.
        Curr Opin Neurol. 2009; 22: 277-282
        • Fang C.
        • Zhu T.
        • Zhang P.
        • Xia L.
        • Sun C.
        Risk factors of neurosurgical site infection after craniotomy: a systematic review and meta-analysis.
        Am J Infect Control. 2017; 45: e123-e134
        • Wang L.Y.
        • Cao X.H.
        • Shi L.K.
        • Ma Z.Z.
        • Wang Y.
        • Liu Y.
        Risk factors for intracranial infection after craniotomy: a case–control study.
        Brain Behav. 2020; 10e01658
        • Bodilsen J.
        • Dalager-Pedersen M.
        • van de Beek D.
        • Brouwer M.C.
        • Nielsen H.
        Risk factors for brain abscess: a nationwide, population-based, nested case–control study.
        Clin Infect Dis. 2020; 71: 1040-1046
        • Elward A.
        • Yegge J.
        • Recktenwald A.
        • Jadwisiak L.
        • Kieffer P.
        • Hohrein M.
        • et al.
        Risk factors for craniotomy or spinal fusion surgical site infection.
        Pediatr Infect Dis J. 2015; 34: 1323-1328
        • Yao J.
        • Liu D.
        Logistic regression analysis of risk factors for intracranial infection after multiple traumatic craniotomy and preventive measures.
        J Craniofac Surg. 2019; 30: 1946-1948
        • Lawson E.H.
        • Hall B.L.
        • Ko C.Y.
        Risk factors for superficial vs deep/organ-space surgical site infections: implications for quality improvement initiatives.
        JAMA Surg. 2013; 148: 849-858
        • Andrade H.B.
        • Ferreira da Silva I.R.
        • Sim J.L.
        • Mello-Neto J.H.
        • Theodoro P.H.N.
        • Torres da Silva M.S.
        • et al.
        Central nervous system infection in the intensive care unit: development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients.
        PLoS One. 2021; 16e0260551
        • Wang H.
        • Ou Y.
        • Fan T.
        • Zhao J.
        • Kang M.
        • Dong R.
        • et al.
        Development and internal validation of a nomogram to predict mortality during the ICU stay of thoracic fracture patients without neurological compromise: an analysis of the MIMIC-III Clinical Database.
        Front Public Health. 2021; 9818439
        • Marshall L.F.
        • Becker D.P.
        • Bowers S.A.
        • Cayard C.
        • Eisenberg H.
        • Gross C.R.
        • et al.
        The National Traumatic Coma Data Bank. Part 1: Design, purpose, goals, and results.
        J Neurosurg. 1983; 59: 276-284
        • Sauerbrei W.
        • Royston P.
        • Binder H.
        Selection of important variables and determination of functional form for continuous predictors in multivariable model building.
        Stat Med. 2007; 26: 5512-5528
        • Ji J.
        • Hui B.
        • Ma X.J.
        • Cai R.
        • Zhang L.
        • Yue Q.
        • et al.
        Expert consensus on diagnosis and treatment of severe infection in neurosurgery in China (2017).
        Nat Med J China. 2019; 97: 21
        • Steyerberg E.W.
        Clinical prediction models: a practical approach to development, validation, and updating.
        Springer, New York, NY2009
        • Hosmer D.W.L.S.
        • Sturdivant R.X.
        Applied logistic regression.
        3rd edn. Wiley, Hoboken, NJ2013
        • Wang Q.
        • Li B.
        • Chen K.
        • Yu F.
        • Su H.
        • Hu K.
        • et al.
        Machine learning-based risk prediction of malignant arrhythmia in hospitalized patients with heart failure.
        ESC Heart Fail. 2021; 8: 5363-5371
        • Van Calster B.
        • Wynants L.
        • Verbeek J.F.M.
        • Verbakel J.Y.
        • Christodoulou E.
        • Vickers A.J.
        • et al.
        Reporting and interpreting decision curve analysis: a guide for investigators.
        Eur Urol. 2018; 74: 796-804
        • Balachandran V.P.
        • Gonen M.
        • Smith J.J.
        • DeMatteo R.P.
        Nomograms in oncology: more than meets the eye.
        Lancet Oncol. 2015; 16: e173-e180
        • Merry E.
        • Thway K.
        • Jones R.L.
        • Huang P.H.
        Predictive and prognostic transcriptomic biomarkers in soft tissue sarcomas.
        NPJ Precis Oncol. 2021; 5: 17
        • Gorudko I.V.
        • Grigorieva D.V.
        • Shamova E.V.
        • Kostevich V.A.
        • Sokolov A.V.
        • Mikhalchik E.V.
        • et al.
        Hypohalous acid-modified human serum albumin induces neutrophil NADPH oxidase activation, degranulation, and shape change.
        Free Radic Biol Med. 2014; 68: 326-334
        • Morotti A.
        • Marini S.
        • Lena U.K.
        • Crawford K.
        • Schwab K.
        • Kourkoulis C.
        • et al.
        Significance of admission hypoalbuminemia in acute intracerebral hemorrhage.
        J Neurol. 2017; 264: 905-911
        • Wu J.
        • Lu A.D.
        • Zhang L.P.
        • Zuo Y.X.
        • Jia Y.P.
        [Study of clinical outcome and prognosis in pediatric core binding factor – acute myeloid leukemia].
        Zhonghua Xue Ye Xue Za Zhi. 2019; 40: 52-57
        • Li Y.
        • Liu Y.
        • Huang Y.
        • Zhang J.
        • Ma Q.
        • Liu X.
        • et al.
        Development and validation of a user-friendly risk nomogram for the prediction of catheter-associated urinary tract infection in neuro-intensive care patients.
        Intens Crit Care Nurs. 2022; 103329
        • Soeters P.B.
        • Wolfe R.R.
        • Shenkin A.
        Hypoalbuminemia: pathogenesis and clinical significance.
        J Parenter Enteral Nutr. 2019; 43: 181-193
        • Dashti S.R.
        • Baharvahdat H.
        • Spetzler R.F.
        • Sauvageau E.
        • Chang S.W.
        • Stiefel M.F.
        • et al.
        Operative intracranial infection following craniotomy.
        Neurosurg Focus. 2008; 24: E10
        • Huang X.
        • Zhang X.
        • Zhou J.
        • Li G.
        • Zheng G.
        • Peng L.
        • et al.
        Analysis of risk factors and preventive strategies for intracranial infection after neuroendoscopic transnasal pituitary adenoma resection.
        BMC Neurosci. 2022; 23: 1
        • Shen Y.L.
        • Liu J.L.
        • Qi S.T.
        • Li W.G.
        • Huo W.K.
        • Yang Y.
        • et al.
        Risk factors for intracranial infection after external ventricular drainage by logistic regression.
        Chin J Nerv Ment Dis. 2015; 41: 705e9
        • Gerlach R.
        • Raabe A.
        • Scharrer I.
        • Meixensberger J.
        • Seifert V.
        Post-operative hematoma after surgery for intracranial meningiomas: causes, avoidable risk factors and clinical outcome.
        Neurol Res. 2004; 26: 61-66
        • Binz D.D.
        • Toussaint L.G. 3rd
        • Friedman J.A.
        Hemorrhagic complications of ventriculostomy placement: a meta-analysis.
        Neurocrit Care. 2009; 10: 253-256