Review| Volume 137, P24-34, July 2023

A critical review on the current state of antimicrobial glove technologies: advances, challenges and future prospects

  • S.W. How
    Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
    Search for articles by this author
  • D.Y.S. Low
    Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
    Search for articles by this author
  • B.F. Leo
    Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
    Search for articles by this author
  • S. Manickam
    Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
    Search for articles by this author
  • B.H. Goh
    Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan, Malaysia

    College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
    Search for articles by this author
  • S.Y. Tang
    Corresponding author. Address: Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
    Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia

    Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
    Search for articles by this author
Published:April 10, 2023DOI:


      Following recent viral outbreaks, there has been a significant increase in global demand for gloves. Biomedical research focuses increasingly on antimicrobial gloves to combat microbial transmission and hospital-acquired infections. Most antimicrobial gloves are manufactured using antimicrobial chemicals such as disinfectants, biocides and sanitizers. The design of antimicrobial gloves incorporates advanced technologies, including colloidal particles and nanomaterials, to enhance antimicrobial effectiveness. A category of antimicrobial gloves also explores and integrates natural antimicrobial benefits from animals, plants and micro-organisms. Many types of antimicrobial agents are available; however, it is crucial that the selected agent exhibits a broad spectrum of activity and is not susceptible to promoting resistance. Additionally, future research should focus on the potential effect of antimicrobial gloves on the skin microbiota and irritation during extended wear. Careful integration of the antimicrobial agent is essential to ensure optimal effectiveness without compromising the mechanical properties of the gloves.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Hospital Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Hernigou P.
        The strange history of surgical gloves in orthopaedic surgery (part I): from no gloves and no hand washing to the introduction of cotton gloves in orthopaedic surgery.
        Int Orthop. 2022; 46: 2705-2714
        • U.S. Food and Drug Administration
        Medical gloves for COVID-19.
        FDA, White Oak, MD2022 (Available at:)
        • Goldman A.H.
        • Haug E.
        • Owen J.R.
        • Wayne J.S.
        • Golladay G.J.
        High risk of surgical glove perforation from surgical rotatory instruments.
        Clin Orthop Relat Res. 2016; 474: 2513-2517
        • Hübner N.O.
        • Goerdt A.M.
        • Stanislawski N.
        • Assadian O.
        • Heidecke C.D.
        • Kramer A.
        • et al.
        Bacterial migration through punctured surgical gloves under real surgical conditions.
        BMC Infect Dis. 2010; 10: 192
        • Ye D.
        • Shan J.
        • Huang Y.
        • Li J.
        • Li C.
        • Liu X.
        • et al.
        A gloves-associated outbreak of imipenem-resistant Acinetobacter baumannii in an intensive care unit in in Guangdong, China.
        BMC Infect Dis. 2015; 15: 179
        • Hassan A.A.
        • Singh M.
        Quick insight on the emergence of antimicrobial gloves.
        MARGMA Q3. 2018; 60–1
        • Purssell E.
        in: Hood P. Khan E. Understanding pharmacology in nursing practice. Springer, New York2020: 147-165
        • Pereira B.M.P.
        • Tagkopoulos I.
        Benzalkonium chlorides: uses, regulatory status, and microbial resistance.
        Appl Environ Microbiol. 2019; 85e00377-19
        • Wang E.W.
        • Layon A.J.
        Chlorhexidine gluconate use to prevent hospital acquired infections – a useful tool, not a panacea.
        Ann Transl Med. 2017; 5: 14
        • Assadian O.
        • Kramer A.
        • Ouriel K.
        • Suchomel M.
        • McLaws M.L.
        • Rottman M.
        • et al.
        Suppression of surgeons’ bacterial hand flora during surgical procedures with a new antimicrobial surgical glove.
        Surg Infect. 2014; 15: 43-49
        • Suchomel M.
        • Brillmann M.
        • Assadian O.
        • Ousey K.J.
        • Presterl E.
        Chlorhexidine-coated surgical gloves influence the bacterial flora of hands over a period of 3 hours.
        Antimicrob Resist Infect Control. 2018; 7: 4-8
        • Edmiston C.E.
        • Zhou S.S.
        • Hoerner P.
        • Krikorian R.
        Evaluation of an antimicrobial surgical glove to inactivate live human immunodeficiency virus following simulated glove puncture.
        Surgery. 2013; 153: 225-233
        • Wang S.P.
        • Yeh Y.S.
        • Penny D.
        Antimicrobial medical gloves.
        US20050186258A1., 2005
        • Reitzel R.
        • Rosenblatt J.
        • Jiang Y.
        • Hachem R.
        • Raad I.
        Disposable gendine antimicrobial gloves for preventing transmission of pathogens in health care settings.
        Am J Infect Control. 2014; 42: 55-59
        • Lee N.
        • Ko W.
        • Hsueh P.
        Nanoparticles in the treatment of infections caused by multidrug-resistant organisms.
        Front Pharmacol. 2019; 10: 1153
        • Mydin R.B.S.M.N.
        • Zahidi I.N.M.
        • Ishak N.N.
        • Ghazali N.S.S.N.
        • Moshawih S.
        • Siddiquee S.
        Potential of calcium carbonate nanoparticles for therapeutic applications.
        Malaysian J Med Health Sci. 2018; 14: 201-206
      1. Jiang WY. A medical latex glove production method. CN 114228219 A. 2022.

      2. Pentanano nano antimicrobial nitrile glove. Melaka: Pentavest Holdings Sdn Bhd, 2022
        • Aguilar Z.P.
        Types of nanomaterials and corresponding methods of synthesis. Nanomaterials for medical applications.
        Elsevier, London2013: 33-82
        • Qiao Y.
        • Yang C.
        • Coady D.J.
        • Ong Z.Y.
        • Hedrick J.L.
        • Yang Y.Y.
        Highly dynamic biodegradable micelles capable of lysing Gram-positive and Gram-negative bacterial membrane.
        Biomaterials. 2012; 33: 1146-1153
        • Oyim J.
        • Omolo C.A.
        • Amuhaya E.K.
        Photodynamic antimicrobial chemotherapy: advancements in porphyrin-based photosensitize development.
        Front Chem. 2021; 9635344
      3. Wight P. Antimicrobial medical glove. WO 2021/001449 A1. 2021.

      4. Antimicrobial gloves. Hartalega Sdn Bhd, Selangor2022
        • Aranaz I.
        • Alcántara A.R.
        • Civera M.C.
        • Arias C.
        • Elorza B.
        • Caballero A.H.
        • et al.
        Chitosan: an overview of its properties and applications.
        Polymers. 2021; 133256
        • Zheng L.Y.
        • Zhu J.F.
        Study on antimicrobial activity of chitosan with different molecular weights.
        Carbohydr Polym. 2003; 54: 527-530
        • Ke C.L.
        • Deng F.S.
        • Chuang C.Y.
        • Lin C.H.
        Antimicrobial actions and applications of chitosan.
        Polymers. 2021; 13: 904
        • Yorsaeng S.
        • Pornsunthorntawee O.
        • Rujiravanit R.
        Preparation and characterization of chitosan-coated DBD plasma-treated natural rubber latex medical surgical gloves with antibacterial activities.
        Plasma Chem Plasma Process. 2012; 32: 1275-1292
        • Abiri R.
        • Silva A.L.M.
        • de Mesquita L.S.S.
        • de Mesquita J.W.C.
        • Atabaki N.
        • de Almeida E.B.
        • et al.
        Towards a better understanding of Artemisia vulgaris: botany, phytochemistry, pharmacological and biotechnological potential.
        Food Res Int. 2018; 109: 403-415
        • Malik S.
        • de Mesquita L.S.S.
        • Silva C.R.
        • De Mesquita J.W.C.
        • De Sá Rocha E.
        • Bose J.
        • et al.
        Chemical profile and biological activities of essential oil from Artemisia vulgaris L. cultivated in Brazil.
        Pharmaceuticals. 2019; 12: 49
      5. Lee BZ, Lee YX, Peng HF, Lv PY, Chu R. A nano chitosan medical material and its preparation method. CN 113598175 A. 2021.

        • Gong X.
        • Chen N.
        • Ren K.
        • Jia J.
        • Wei K.
        • Zhang L.
        • et al.
        The fruits of Siraitia grosvenorii: a review of a Chinese food-medicine.
        Front Pharmacol. 2019; 10: 1400
        • Bylka W.
        • Znajdek-Awizeń P.
        • Studzińska-Sroka E.
        • Brzezińska M.
        Centella asiatica in cosmetology.
        Postep Dermatologii I Alergol. 2013; 30: 46-49
        • Dash B.K.
        • Faruquee H.M.
        • Biswas S.K.
        • Alam M.K.
        • Sisir S.M.
        • Prodhan U.K.
        Antibacterial and antifungal activities of several extracts of Centella asiatica L. against some human pathogenic microbes.
        Life Sci Med Res. 2011; 2011LSMR-35
        • Hu Z.Q.
        A rubber glove with antibacterial properties. CN 103980566 A.
        • Patil D.
        • Golia V.
        • Overland M.
        • Stoller M.
        • Chatterjee K.
        Mechanobactericidal nanotopography on nitrile surfaces toward antimicrobial protective gear.
        ACS Macro Lett. 2023; 12: 227-233
      6. ASTM D7907-14(2019) standard test methods for determination of bactericidal efficacy on the surface of medical examination gloves. ASTM International, Conshohocken, PA2019 (Available at:)
        • Kampf G.
        Efficacy of biocidal agents and disinfectants against the monkeypox virus and other orthopoxviruses.
        J Hosp Infect. 2022; 127: 101-110
        • MacGowan A.
        • Macnaughton E.
        Antibiotic resistance.
        Medicine. 2017; 45: 622-628
        • Alves P.J.
        • Gryson L.
        • Hajjar J.
        • Lepelletier D.
        • Reners M.
        • Rodríguez Salazar J.
        • et al.
        Role of antiseptics in the prevention and treatment of infections in nursing homes.
        J Hosp Infect. 2022; 131: 58-69
        • Giuliani F.
        • Martinelli M.
        • Cocchi A.
        • Arbia D.
        • Fantetti L.
        • Roncucci G.
        In vitro resistance selection studies of RLP068/Cl, a new Zn(II) phthalocyanine suitable for antimicrobial photodynamic therapy.
        Antimicrob Agents Chemother. 2010; 54: 637-642
        • Scientific Committee on Emerging and Newly-Identified Health Risks
        Assessment of the antibiotic resistance effects of biocides.
        SCENIHR, 2009
        • Kalaiselvi G.
        • Padmavathi B.K.
        Emerging drug-resistant bacterial flora on the hands of healthcare workers – a challenge.
        Evol Med Dent Sci. 2017; 6: 4640-4644
        • Richardson B.N.
        • Lin J.
        • Buchwald Z.S.
        • Bai J.
        Skin microbiome and treatment-related skin toxicities in patients with cancer: a mini-review.
        Front Oncol. 2022; 12924849
        • Zapka C.
        • Leff J.
        • Henley J.
        • Tittl J.
        • De Nardo E.
        • Butler M.
        • et al.
        Comparison of standard culture-based method to culture-independent method for evaluation of hygiene effects on the hand microbiome.
        Am Soc Microbiol. 2017; 8e00093-17
        • Rosenthal M.
        • Aiello A.
        • Larson E.
        • Chenoweth C.
        • Foxman B.
        Healthcare workers’ hand microbiome may mediate carriage of hospital pathogens.
        Pathogens. 2013; 3: 1-13
        • SanMiguel A.J.
        • Meisel J.S.
        • Horwinski J.
        • Zheng Q.
        • Grice E.A.
        Topical antimicrobial treatments can elicit shifts to resident skin bacterial communities and reduce colonization by Staphylococcus aureus competitors.
        Am Soc Microbiol. 2017; 61e00774-17
        • SanMiguel A.J.
        • Meisel J.S.
        • Horwinski J.
        • Zheng Q.
        • Bradley C.W.
        • Grice E.A.
        Antiseptic agents elicit short-term, personalized, and body site-specific shifts in resident skin bacterial communities.
        J Invest Dermatol. 2018; 138: 2234-2243
        • Filon F.L.
        • Pesce M.
        • Paulo M.S.
        • Loney T.
        • Modenese A.
        • John S.M.
        • et al.
        Incidence of occupational contact dermatitis in healthcare workers: a systematic review.
        J Eur Acad Dermatology Venerol. 2021; 35: 1285-1289
        • Polecka A.
        • Owsianko N.
        • Awchimkow A.
        • Baran A.
        • Hermanowicz J.M.
        • Flisiak I.
        Questionnaire-based study evaluating the hand hygiene practices and the impact of disinfection in the COVID-19 pandemic on hand skin conditions in Poland.
        J Clin Med. 2023; 12: 195
        • World Health Organization
        WHO guidelines on hand hygiene in health care: first global patient safety challenge – clean care is safer care.
        WHO, Geneva2009
        • Quiñones-Vico M.I.
        • Fernández-González A.
        • Pérez-Castejón E.
        • Montero-Vílchez T.
        • Arias-Santiago S.
        Cytotoxicity and epidermal barrier function evaluation of common antiseptics for clinical use in an artificial autologous skin model.
        J Clin Med. 2021; 10: 642
        • Kownatzki E.
        Hand hygiene and skin health.
        J Hosp Infect. 2003; 55: 239-245
        • Liu X.
        • German G.K.
        The effects of barrier disruption and moisturization on the dynamic drying mechanics of human stratum corneum.
        J Mech Behav Biomed Mater. 2015; 49: 80-89
        • Erta A.
        • Zavorins A.
        Impact of different skin disinfectants on the skin hydration level.
        Proceedings of the 63rd International Scientific Conference of Daugavpils University, Daugavpils, Latvia,, 2021: 6-13
        • Graham M.
        • Nixon R.
        • Burrell L.J.
        • Bolger C.
        • Johnson P.D.R.
        • Grayson M.L.
        Low rates of cutaneous adverse reactions to alcohol-based hand hygiene solution during prolonged use in a large teaching hospital.
        Antimicrob Agents Chemother. 2005; 49: 4404-4405
        • Bouslimani A.
        • Da Silva R.
        • Kosciolek T.
        • Janssen S.
        • Callewaert C.
        • Amir A.
        • et al.
        The impact of skin care products on skin chemistry and microbiome dynamics.
        BMC Biol. 2019; 17: 47
        • Scheithauer S.
        • Häfner H.
        • Seef R.
        • Seef S.
        • Hilgers R.D.
        • Lemmen S.
        Disinfection of gloves: Feasible, but pay attention to the disinfectant/glove combination.
        J Hosp Infect. 2016; 94: 268-272
        • Chang J.
        • Jeong T.D.
        • Lee S.
        • Kim Y.
        • Lee J.
        • Lee H.K.
        • et al.
        Intactness of medical nonsterile gloves on use of alcohol disinfectants.
        Ann Lab Med. 2018; 38: 83-84
        • Garrido-Molina J.M.
        • Márquez-Hernández V.V.
        • Alcayde-García A.
        • Ferreras-Morales C.A.
        • García-Viola A.
        • Aguilera-Manrique G.
        • et al.
        Disinfection of gloved hands during the COVID-19 pandemic.
        J Hosp Infect. 2021; 107: 5-11
        • Gao P.
        • Horvatin M.
        • Niezgoda G.
        • Weible R.
        • Shaffer R.
        Effect of multiple alcohol-based hand rub applications on the tensile properties of thirteen brands of medical exam nitrile and latex gloves.
        J Occup Environ Hyg. 2016; 13: 905-914
        • Centers for Disease Control and Prevention
        Strategies for optimizing the supply of disposable medical gloves.
        CDC, Atlanta, GA2020 (Available at:)