Advertisement
Research Article| Volume 136, P45-54, June 2023

Download started.

Ok

Influence of bed making on loads of airborne and surface-associated drug-resistant bacteria in patient rooms

  • P. Warnke
    Correspondence
    Corresponding author. Address: Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Schillingallee 70, 18057 Rostock, Germany.
    Affiliations
    Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
    Search for articles by this author
  • V.R. Pappisch
    Affiliations
    Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
    Search for articles by this author
  • H. Frickmann
    Affiliations
    Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany

    Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany
    Search for articles by this author
  • A. Podbielski
    Affiliations
    Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
    Search for articles by this author
Published:March 20, 2023DOI:https://doi.org/10.1016/j.jhin.2023.03.010

      Summary

      Introduction

      Limited information is available on the kinetics of airborne multi-drug-resistant bacteria after making patients' beds. Previous experience of bed making on loads of meticillin-resistant Staphylococcus aureus (MRSA) was re-evaluated with a substantial sample size and, for the first time, simultaneous examination of the environmental load of multi-drug-resistant Gram-negative bacteria (MDRGN) was undertaken.

      Methods

      Airborne pathogen measurement was carried out in 26 rooms with patients with MRSA and 25 rooms with patients with MDRGN before (−1 min) and after (1 min, 15 min, 60 min) bed making at distances of 0 m and 3 m from the bed. Surface sampling was performed in the patients' surroundings. Factors of potential influence were recorded.

      Results

      Gram-positive non-pathogenic species dominated the air samples, while Gram-negative organisms constituted only 1.4%. Bed making shifted the proportions towards coagulase-negative staphylococci and S. aureus. A transient increase in MRSA in room air was detected in most samples 1 min and 15 min after bed making. MDRGN were detected in the air of two patient rooms. Surface samples showed that MRSA, but not MDRGN, was isolated regularly in the patient environment. Correlation between airborne and surface pathogen loads after bed making was demonstrated.

      Conclusions

      The study results indicate the importance of wearing a face mask in combination with cautious handling techniques when making the beds of patients carrying multi-drug-resistant bacteria. If the carrier status of a patient is unknown, consideration should be given to protective measures for staff and other patients present during and shortly after bed making. Surface disinfection should not be started until at least 30 min after bed making.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hospital Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Greene V.W.
        • Vesley D.
        • Bond R.G.
        • Michaelsen G.S.
        Microbiological contamination of hospital air. I. Quantitative studies.
        Appl Microbiol. 1962; 10: 561-566
        • Shiomori T.
        • Miyamoto H.
        • Makishima K.
        • Yoshida M.
        • Fujiyoshi T.
        • Udaka T.
        • et al.
        Evaluation of bedmaking-related airborne and surface methicillin-resistant Staphylococcus aureus contamination.
        J Hosp Infect. 2002; 50: 30-35
        • Kramer A.
        • Schwebke I.
        • Kampf G.
        How long do nosocomial pathogens persist on inanimate surfaces? A systematic review.
        BMC Infect Dis. 2006; 6: 130
        • Weber D.J.
        • Anderson D.
        • Rutala W.A.
        The role of the surface environment in healthcare-associated infections.
        Curr Opin Infect Dis. 2013; 26: 338-344
        • Allen K.D.
        • Green H.T.
        Hospital outbreak of multi-resistant Acinetobacter anitratus: an airborne mode of spread?.
        J Hosp Infect. 1987; 9: 110-119
        • Bernards A.T.
        • Frénay H.M.
        • Lim B.T.
        • Hendriks W.D.
        • Dijkshoorn L.
        • van Boven C.P.
        Methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii: an unexpected difference in epidemiologic behavior.
        Am J Infect Control. 1998; 26: 544-551
        • Grieble H.G.
        • Bird T.J.
        • Nidea H.M.
        • Miller C.A.
        Chute-hydropulping waste disposal system: a reservoir of enteric bacilli and pseudomonas in a modern hospital.
        J Infect Dis. 1974; 130: 602-607
        • Bauer T.M.
        • Ofner E.
        • Just H.M.
        • Just H.
        • Daschner F.D.
        An epidemiological study assessing the relative importance of airborne and direct contact transmission of microorganisms in a medical intensive care unit.
        J Hosp Infect. 1990; 15: 301-309
        • Gastmeier P.
        • Breier A.C.
        • Brandt C.
        Influence of laminar airflow on prosthetic joint infections: a systematic review.
        J Hosp Infect. 2012; 81: 73-78
        • Berard F.
        • Gandon J.
        Postoperative wound infections: the influence of ultraviolet irradiation of the operating room and of various other factors.
        Ann Surg. 1964; 160: 1-192
        • Nordmann P.
        • Poirel L.
        Epidemiology and diagnostics of carbapenem resistance in Gram-negative bacteria.
        Clin Infect Dis. 2019; 69: S521-S528
        • Greene V.W.
        • Vesley D.
        • Bond R.G.
        • Michaelsen G.S.
        Microbiological contamination of hospital air. II. Qualitative studies.
        Appl Microbiol. 1962; 10: 567-571
        • Park D.U.
        • Yeom J.K.
        • Lee W.J.
        • Lee K.M.
        Assessment of the levels of airborne bacteria, Gram-negative bacteria, and fungi in hospital lobbies.
        Int J Environ Res Public Health. 2013; 10: 541-555
        • Augustowska M.
        • Dutkiewicz J.
        Variability of airborne microflora in a hospital ward within a period of one year.
        Ann Agric Environ Med. 2006; 13: 99-106
        • Lemmen S.W.
        • Häfner H.
        • Zolldann D.
        • Stanzel S.
        • Lütticken R.
        Distribution of multi-resistant Gram-negative versus Gram-positive bacteria in the hospital inanimate environment.
        J Hosp Infect. 2004; 56: 191-197
        • Greene V.W.
        • Bond R.G.
        • Michaelsen G.S.
        Air handling systems must be planned to reduce the spread of infection.
        Mod Hosp. 1960; 95: 136-144
        • McGowan Jr., J.E.
        Environmental factors in nosocomial infection – a selective focus.
        Rev Infect Dis. 1981; 3: 760-769
        • Rutala W.A.
        • Katz E.B.
        • Sherertz R.J.
        • Sarubbi Jr., F.A.
        Environmental study of a methicillin-resistant Staphylococcus aureus epidemic in a burn unit.
        J Clin Microbiol. 1983; 18: 683-688
        • Wagenvoort J.H.
        • Davies B.I.
        • Westermann E.J.
        • Werink T.J.
        • Toenbreker H.M.
        MRSA from air-exhaust channels.
        Lancet. 1993; 341: 840-841
        • Cotterill S.
        • Evans R.
        • Fraise A.P.
        An unusual source for an outbreak of methicillin-resistant Staphylococcus aureus on an intensive therapy unit.
        J Hosp Infect. 1996; 32: 207-216
        • Farrington M.
        • Ling J.
        • Ling T.
        • French G.L.
        Outbreaks of infection with methicillin-resistant Staphylococcus aureus on neonatal and burns units of a new hospital.
        Epidemiol Infect. 1990; 105: 215-228
        • Jawad A.
        • Heritage J.
        • Snelling A.M.
        • Gascoyne-Binzi D.M.
        • Hawkey P.M.
        Influence of relative humidity and suspending menstrua on survival of Acinetobacter spp. on dry surfaces.
        J Clin Microbiol. 1996; 34: 2881-2887
        • Jawad A.
        • Seifert H.
        • Snelling A.M.
        • Heritage J.
        • Hawkey P.M.
        Survival of Acinetobacter baumannii on dry surfaces: comparison of outbreak and sporadic isolates.
        J Clin Microbiol. 1998; 36: 1938-1941
        • Musa E.K.
        • Desai N.
        • Casewell M.W.
        The survival of Acinetobacter calcoaceticus inoculated on fingertips and on formica.
        J Hosp Infect. 1990; 15: 219-227
        • Sedgwick P.
        Multiple hypothesis testing and Bonferroni's correction.
        BMJ. 2014; 349: g6284
        • Jain R.
        • Kralovic S.M.
        • Evans M.E.
        • Ambrose M.
        • Simbartl L.A.
        • Obrosky D.S.
        • et al.
        Veterans Affairs initiative to prevent methicillin-resistant Staphylococcus aureus infections.
        N Engl J Med. 2011; 364: 1419-1430
        • Solberg C.O.
        A study of carriers of Staphylococcus aureus with special regard to quantitative bacterial estimations.
        Acta Med Scand Suppl. 1965; 436: 1-96