Review| Volume 134, P11-26, April 2023

Download started.


Clinical prediction tools for identifying antimicrobial-resistant organism (ARO) carriage on hospital admissions: a systematic review

  • D. Jeon
    Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
    Search for articles by this author
  • S. Chavda
    Department of Medicine, University of Calgary, Calgary, AB, Canada
    Search for articles by this author
  • E. Rennert-May
    Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada

    Department of Medicine, University of Calgary, Calgary, AB, Canada

    Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada

    O’Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada

    Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
    Search for articles by this author
  • J. Leal
    Corresponding author. 3E17-Cal Wenzel Precision Health Bldg, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada.
    Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada

    Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada

    O’Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada

    Infection Prevention and Control, Alberta Health Services, Calgary, AB, Canada
    Search for articles by this author
Published:January 16, 2023DOI:



      Increasing prevalence of antimicrobial-resistant organisms (AROs) is a growing economic and healthcare challenge. Increasing utilization of electronic medical record (EMR) systems and improvements in computation and analytical techniques afford an opportunity to reduce the spread of AROs through the development of clinical prediction tools to identify ARO carriers on admission to hospital.


      To identify existing clinical prediction tools for meticillin-resistant Staphylococcus aureus (MRSA) and carbapenemase-producing organisms (CPOs), their predictive performance, and risk factors utilized in these tools.


      The CHARMS checklist was followed. Medline, EMBASE, Cochrane SR, CRD databases (DARE, NHS EED), CINAHL and Web of Science were searched from database inception to 26th July 2021. Full-text articles were assessed independently, and quality assessment was conducted using the Prediction Model Risk of Bias Assessment Tool.


      In total, 3809 abstracts were identified and 22 studies were included. Among these studies, risk score models were the most common prediction tool (N=16). Previous admission, recent antibiotic exposure, age and sex were the most common risk factors for ARO carriage. Prediction tools were commonly evaluated on sensitivity and specificity with ranges of 15–100% and 46–98.6%, respectively, for MRSA, and 30–81.3% and 79.8–99.9%, respectively, for CPOs.


      There is no gold standard ARO prediction tool. However, high-performance clinical prediction tools and identification of key risk factors for the early detection of AROs exist. Risk score models are easier to use and interpret; however, with recent improvements in machine learning techniques, highly robust models can be developed with data stored in an EMR.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Hospital Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Ventola C.L.
        The antibiotic resistance crisis: part 1: causes and threats.
        P T. 2015; 40: 277-283
        • Solomon S.L.
        • Oliver K.B.
        Antibiotic resistance threats in the United States: stepping back from the brink.
        Am Fam Physician. 2014; 89: 938-941
        • Struelens M.J.
        The epidemiology of antimicrobial resistance in hospital acquired infections: problems and possible solutions.
        BMJ. 1998; 317: 652-654
        • El Aila N.A.
        • Al Laham N.A.
        • Ayesh B.M.
        Nasal carriage of methicillin resistant Staphylococcus aureus among health care workers at Al Shifa hospital in Gaza Strip.
        BMC Infect Dis. 2017; 17: 28
        • Septimus E.
        • Weinstein R.A.
        • Perl T.M.
        • Goldmann D.A.
        • Yokoe D.S.
        Approaches for preventing healthcare-associated infections: go long or go wide?.
        Infect Control Hosp Epidemiol. 2014; 35: 797-801
        • Creamer E.
        • Galvin S.
        • Dolan A.
        • Sherlock O.
        • Dimitrov B.D.
        • Fitzgerald-Hughes D.
        • et al.
        Evaluation of screening risk and nonrisk patients for methicillin-resistant Staphylococcus aureus on admission in an acute care hospital.
        Am J Infect Control. 2012; 40: 411-415
      1. Predictive risk factors for methicillin-resistant S. aureus (MRSA) colonisation among adults in acute care settings: a systematic review.
        JBI Libr Syst Rev. 2010; 8: 1-12
        • Robicsek A.
        • Beaumont J.L.
        • Wright M.O.
        • Thomson Jr., R.B.
        • Kaul K.L.
        • Peterson L.R.
        Electronic prediction rules for methicillin-resistant Staphylococcus aureus colonization.
        Infect Control Hosp Epidemiol. 2011; 32: 9-19
      2. Hartvigsen T. Sen C. Brownwell S. Teeple E. Kong X. Rundensteiner E.A. Prediction of MRSA infections using electronic health records. 11th international joint conference on biomedical engineering systems and technologies (BIOSTEC 2018). Funchal, Madeira, 2018
        • Moons K.G.
        • de Groot J.A.
        • Bouwmeester W.
        • Vergouwe Y.
        • Mallett S.
        • Altman D.G.
        • et al.
        Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist.
        PLoS Med. 2014; 11e1001744
        • Page M.J.
        • McKenzie J.E.
        • Bossuyt P.M.
        • Boutron I.
        • Hoffmann T.C.
        • Mulrow C.D.
        • et al.
        The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.
        BMJ. 2021; 372: n71
        • Ingui B.J.
        • Rogers M.A.
        Searching for clinical prediction rules in MEDLINE.
        J Am Med Inform Assoc. 2001; 8: 391-397
        • Geersing G.J.
        • Bouwmeester W.
        • Zuithoff P.
        • Spijker R.
        • Leeflang M.
        • Moons K.G.
        Search filters for finding prognostic and diagnostic prediction studies in Medline to enhance systematic reviews.
        PLoS One. 2012; 7e32844
        • Hosmer D.W.
        • Lemeshow S.
        • Sturdivant R.X.
        Applied logistic regression.
        Wiley, Hoboken, NJ2013
        • Harbarth S.
        • Sax H.
        • Uckay I.
        • Fankhauser C.
        • Agostinho A.
        • Christenson J.T.
        • et al.
        A predictive model for identifying surgical patients at risk of methicillin-resistant Staphylococcus aureus carriage on admission.
        J Am Coll Surg. 2008; 207: 683-689
        • Young B.E.
        • Lye D.C.
        • Krishnan P.
        • Chan S.P.
        • Leo Y.S.
        A prospective observational study of the prevalence and risk factors for colonization by antibiotic resistant bacteria in patients at admission to hospital in Singapore.
        BMC Infect Dis. 2014; 14: 298
        • Shorr A.F.
        • Myers D.E.
        • Huang D.B.
        • Nathanson B.H.
        • Emons M.F.
        • Kollef M.H.
        A risk score for identifying methicillin-resistant Staphylococcus aureus in patients presenting to the hospital with pneumonia.
        BMC Infect Dis. 2013; 13: 268
        • Raschpichler G.
        • Raupach-Rosin H.
        • Akmatov M.K.
        • Castell S.
        • Rubsamen N.
        • Feier B.
        • et al.
        Development and external validation of a clinical prediction model for MRSA carriage at hospital admission in Southeast Lower Saxony, Germany.
        Sci Rep. 2020; 1017998
        • Riedel S.
        • Von Stein D.
        • Richardson K.
        • Page J.
        • Miller S.
        • Winokur P.
        • et al.
        Development of a prediction rule for methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococcus carriage in a Veterans Affairs Medical Center population.
        Infect Control Hosp Epidemiol. 2008; 29: 969-971
        • Harbarth S.
        • Sax H.
        • Fankhauser-Rodriguez C.
        • Schrenzel J.
        • Agostinho A.
        • Pittet D.
        Evaluating the probability of previously unknown carriage of MRSA at hospital admission.
        Am J Med. 2006; 119: 275e15-275e23
        • Furuno J.P.
        • McGregor J.C.
        • Harris A.D.
        • Johnson J.A.
        • Johnson J.K.
        • Langenberg P.
        • et al.
        Identifying groups at high risk for carriage of antibiotic-resistant bacteria.
        Arch Intern Med. 2006; 166: 580-585
        • Morgan D.J.
        • Day H.R.
        • Furuno J.P.
        • Young A.
        • Johnson J.K.
        • Bradham D.D.
        • et al.
        Improving efficiency in active surveillance for methicillin-resistant Staphylococcus aureus or vancomycin-resistant enterococcus at hospital admission.
        Infect Control Hosp Epidemiol. 2010; 31: 1230-1235
        • Claeys K.C.
        • Zasowski E.J.
        • Lagnf A.M.
        • Levine D.P.
        • Davis S.L.
        • Rybak M.J.
        Novel application of published risk factors for methicillin-resistant S. aureus in acute bacterial skin and skin structure infections.
        Int J Antimicrob Agents. 2018; 51: 43-46
        • Furuno J.P.
        • Harris A.D.
        • Wright M.O.
        • McGregor J.C.
        • Venezia R.A.
        • Zhu J.
        • et al.
        Prediction rules to identify patients with methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci upon hospital admission.
        Am J Infect Control. 2004; 32: 436-440
        • Torres K.
        • Sampathkumar P.
        Predictors of methicillin-resistant Staphylococcus aureus colonization at hospital admission.
        Am J Infect Control. 2013; 41: 1043-1047
        • Sax H.
        • Harbarth S.
        • Gavazzi G.
        • Henry N.
        • Schrenzel J.
        • Rohner P.
        • et al.
        Prevalence and prediction of previously unknown MRSA carriage on admission to a geriatric hospital.
        Age Ageing. 2005; 34: 456-462
        • Lucet J.C.
        • Chevret S.
        • Durand-Zaleski I.
        • Chastang C.
        • Regnier B.
        • Multicenter Study Group
        Prevalence and risk factors for carriage of methicillin-resistant Staphylococcus aureus at admission to the intensive care unit: results of a multicenter study.
        Arch Intern Med. 2003; 163: 181-188
        • Elias J.
        • Heuschmann P.U.
        • Schmitt C.
        • Eckhardt F.
        • Boehm H.
        • Maier S.
        • et al.
        Prevalence dependent calibration of a predictive model for nasal carriage of methicillin-resistant Staphylococcus aureus.
        BMC Infect Dis. 2013; 13: 111
        • Evans R.S.
        • Wallace C.J.
        • Lloyd J.F.
        • Taylor C.W.
        • Abouzelof R.H.
        • Sumner S.
        • et al.
        Rapid identification of hospitalized patients at high risk for MRSA carriage.
        J Am Med Inform Assoc. 2008; 15: 506-512
        • Pan A.
        • Lee A.
        • Cooper B.
        • Chalfine A.
        • Daikos G.L.
        • Garilli S.
        • et al.
        Risk factors for previously unknown meticillin-resistant Staphylococcus aureus carriage on admission to 13 surgical wards in Europe.
        J Hosp Infect. 2013; 83: 107-113
        • Wakatake H.
        • Fujitani S.
        • Kodama T.
        • Kawamoto E.
        • Yamada H.
        • Yanai M.
        • et al.
        Positive clinical risk factors predict a high rate of methicillin-resistant Staphylococcus aureus colonization in emergency department patients.
        Am J Infect Control. 2012; 40: 988-991
        • Hsu C.C.
        • Lin Y.E.
        • Chen Y.S.
        • Liu Y.C.
        • Muder R.R.
        Validation study of artificial neural network models for prediction of methicillin-resistant Staphylococcus aureus carriage.
        Infect Control Hosp Epidemiol. 2008; 29: 607-614
        • McGuire R.J.
        • Yu S.C.
        • Payne P.R.O.
        • Lai A.M.
        • Vazquez-Guillamet M.C.
        • Kollef M.H.
        • et al.
        A pragmatic machine learning model to predict carbapenem resistance.
        Antimicrob Agents Chemother. 2021; 65e0006321
        • Ciobotaro P.
        • Flaks-Manov N.
        • Oved M.
        • Schattner A.
        • Hoshen M.
        • Ben-Yosef E.
        • et al.
        Predictors of persistent carbapenem-resistant Enterobacteriaceae carriage upon readmission and score development.
        Infect Control Hosp Epidemiol. 2016; 37: 188-196
        • Song J.Y.
        • Jeong I.S.
        Validation of a carbapenem-resistant Enterobacteriaceae colonization risk prediction model: a retrospective cohort study in Korean intensive care units.
        Am J Infect Control. 2019; 47: 1436-1442
        • Davenport T.
        • Kalakota R.
        The potential for artificial intelligence in healthcare.
        Future Healthc J. 2019; 6: 94-98
      3. Bhardwaj R. Nambiar A.R. Dutta D. A study of machine learning in healthcare. IEEE 41st annual computer software and applications conference (COMPSAC), Turin, Italy. 2017
        • Forster A.J.
        • Oake N.
        • Roth V.
        • Suh K.N.
        • Majewski J.
        • Leeder C.
        • et al.
        Patient-level factors associated with methicillin-resistant Staphylococcus aureus carriage at hospital admission: a systematic review.
        Am J Infect Control. 2013; 41: 214-220
        • van Loon K.
        • Voor In 't Holt A.F.
        • Vos M.C.
        A systematic review and meta-analyses of the clinical epidemiology of carbapenem-resistant Enterobacteriaceae.
        Antimicrob Agents Chemother. 2017; 62e01730-17
        • Tacconelli E.
        New strategies to identify patients harbouring antibiotic-resistant bacteria at hospital admission.
        Clin Microbiol Infect. 2006; 12: 102-109
        • Aizen E.
        • Ljubuncic Z.
        • Ljubuncic P.
        • Aizen I.
        • Potasman I.
        Risk factors for methicillin-resistant Staphylococcus aureus colonization in a geriatric rehabilitation hospital.
        J Gerontol A Biol Sci Med Sci. 2007; 62: 1152-1156
        • Kim J.H.
        Estimating classification error rate: repeated cross-validation, repeated hold-out and bootstrap.
        Comput Stat Data Anal. 2009; 53: 3735-3745
        • Borra S.
        • di Ciaccio A.
        Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods.
        Comput Stat Data Anal. 2010; 54: 2976-2989
        • Hunter L.
        Challenging the reported disadvantages of e-questionnaires and addressing methodological issues of online data collection.
        Nurse Res. 2012; 20: 11-20
        • Menachemi N.
        • Collum T.H.
        Benefits and drawbacks of electronic health record systems.
        Risk Manag Healthc Policy. 2011; 4: 47-55
        • Fritz S.A.
        • Hogan P.G.
        • Singh L.N.
        • Thompson R.M.
        • Wallace M.A.
        • Whitney K.
        • et al.
        Contamination of environmental surfaces with Staphylococcus aureus in households with children infected with methicillin-resistant S aureus.
        JAMA Pediatr. 2014; 168: 1030-1038
        • Centers for Disease Control and Prevention
        Methicillin-resistant Staphylococcus aureus (MRSA).
        CDC, Atlanta, GA2019
        • Johnstone J.
        • Policarpio M.E.
        • Lam F.
        • Adomako K.
        • Prematunge C.
        • Nadolny E.
        • et al.
        Rates of blood cultures positive for vancomycin-resistant enterococcus in Ontario: a quasi-experimental study.
        CMAJ Open. 2017; 5: E273-E280
        • Johnstone J.
        • Shing E.
        • Saedi A.
        • Adomako K.
        • Li Y.
        • Brown K.A.
        • et al.
        Discontinuing contact precautions for vancomycin-resistant enterococcus (VRE) is associated with rising VRE bloodstream infection rates in Ontario hospitals, 2009–2018: a quasi-experimental study.
        Clin Infect Dis. 2020; 71: 1756-1759