Advertisement

The carbon footprint of the operating room related to infection prevention measures: a scoping review

  • A. Bolten
    Affiliations
    Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
    Search for articles by this author
  • D.S. Kringos
    Affiliations
    Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands

    Amsterdam Public Health Research Institute, Quality of Care, Amsterdam, the Netherlands
    Search for articles by this author
  • I.J.B. Spijkerman
    Affiliations
    Department of Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
    Search for articles by this author
  • N.H. Sperna Weiland
    Correspondence
    Corresponding author. Address: Department of Anaesthesiology/Centre for Sustainable Healthcare, Amsterdam UMC, Room H1-125, P.O. Box 22660, 1100 DD Amsterdam, the Netherlands. Tel.: +31 20 5669111.
    Affiliations
    Amsterdam Public Health Research Institute, Quality of Care, Amsterdam, the Netherlands

    Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands

    Centre for Sustainable Healthcare, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
    Search for articles by this author

      Summary

      Background

      Infection prevention measures are widely used in operating rooms (ORs). However, the extent to which they are at odds with ambitions to reduce the health sector's carbon footprint remains unclear.

      Aim

      To synthesize the evidence base for the carbon footprint of commonly used infection prevention measures in the OR, namely medical devices and instruments, surgical attire and air treatment systems.

      Methods

      A scoping review of the international scientific literature was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. The search was performed in PubMed and Google Scholar. Articles published between 2010 and June 2021 on infection prevention measures, their impact on the health sector's carbon footprint, and risk for surgical site infections (SSIs) were included.

      Findings

      Although hospitals strive to reduce their carbon footprint, many infection prevention measures result in increased emissions. Evidence suggests that the use of disposable items instead of reusable items generally increases the carbon footprint, depending on sources of electricity. Controversy exists regarding the correlation between air treatment systems, contamination and the incidence of SSIs. The literature indicates that new air treatment systems consume more energy and do not necessarily reduce SSIs compared with conventional systems.

      Conclusion

      Infection prevention measures in ORs can be at odds with sustainability. The use of new air treatment systems and disposable items generally leads to significant greenhouse gas emissions, and does not necessarily reduce the incidence of SSIs. Alternative infection prevention measures with less environmental impact are available. Implementation could be facilitated by embracing environmental impact as an additional dimension of quality of care, which should change current risk-based approaches for the prevention of SSIs.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hospital Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al. IPCC, 2021: climate change: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. Available at: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf [last accessed July 2022].

        • United Nations
        The Paris agreement. Article 2.
        United Nations, New York2015 (Available at:) ([last accessed July 2022])
        • Karliner J.
        • Slotterback S.
        • Boyd R.
        • Ashby B.
        • Steele K.
        Health care’s climate footprint – how the health sector contributes to the global climate crisis and opportunities for action. Climate-smart Health Care Series Green Paper Number One.
        Health Care Without Harm, 2019 (Available at:) ([last accessed July 2022])
        • Chung J.W.
        • Meltzer D.O.
        Estimate of the carbon footprint of the US health care sector.
        J Am Med Assoc. 2009; 302 (–2): 1970
        • Watts N.
        • Amann M.
        • Arnell N.
        • Ayeb-Karlsson S.
        • Belesova K.
        • Boykoff M.
        • et al.
        The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate.
        Lancet. 2019; 394: 1836-1878
        • Watts N.
        • Amann M.
        • Ayeb-Karlsson S.
        • Belesova K.
        • Bouley T.
        • Boykoff M.
        • et al.
        The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health.
        Lancet. 2018; 391: 581-630
        • Watts N.
        • Amann M.
        • Arnell N.
        • Ayeb-Karlsson S.
        • Beagley J.
        • Belesova K.
        • et al.
        The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises.
        Lancet. 2021; 397: 129-170
        • MacNeill A.J.
        • Lillywhite R.
        • Brown C.J.
        The impact of surgery on global climate: a carbon footprinting study of operating theatres in three health systems.
        Lancet Planet Health. 2017; 1: e360-e367
        • Axelrod D.
        • Bell C.
        • Feldman J.
        • Hopf H.
        • Huncke T.
        • Paulsen W.
        • et al.
        Greening the operating room and perioperative arena: environmental sustainability for anesthesia practice.
        American Society of Anesthesiologists, Schaumburg2017
        • Smith P.W.
        • Watkins K.
        • Hewlett A.
        Infection control through the ages.
        Am J Infect Control. 2012; 40: 35-42
        • De Federatie voor Medisch Specialisten; Het Rijksinstituut voor Volksgezondheid en Milieu; De Stichting Kwaliteitsimpuls voor de Langdurige Zorg
        Infection prevention guidelines of Rijksinstituut voor Volksgezondheid en Milieu.
        Werkgroep Infection Prevention, 2022 (Available at: https://www.rivm.nl/werkgroep-infectie-preventie-wip [last accessed July 2022])
        • Prävention postoperativer Wundinfektionen
        Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut.
        Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2018; 61: 448-473
        • Association for Perioperative Practice
        Standards and recommendations.
        5th ed. AFPP, Harrogate2022
        • Tricco A.
        • Lillie E.
        • Zarin W.
        • O’Brien K.
        • Colquhoun H.
        • Levac D.
        • et al.
        PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and explanation.
        Ann Intern Med. 2018; 169: 467-473
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        PLoS Med. 2009; 6e1000097
        • Arksey H.
        • O’Malley L.
        Scoping studies: towards a methodological framework.
        Int J Soc Res Methodol Theory Pract. 2005; 8: 19-32
        • Laufman H.
        • Belkin N.L.
        • Meyer K.K.
        A critical review of a century’s progress in surgical apparel: how far have we come?.
        J Am Coll Surg. 2000; 191: 554-568
        • Sleth J.
        • Servais R.
        • Saizy C.
        • Javitary W.
        • Lafforgue E.
        Disposable or reusable blade in laryngoscopy: what choice in Languedoc-Roussillon, France?.
        Br J Anaesth. 2013; 110: 654-656
        • World Health Organization
        WHO infection control guidelines for transmissible spongiform encephalopathies.
        Report of a WHO Consultation, Geneva, Switzerland, 23–26 March 1999 (Available at:) ([last accessed July 2022])
        • Thomas J.G.
        • Chenoweth C.E.
        • Sullivan S.E.
        Iatrogenic Creutzfeldt–Jakob disease via surgical instruments.
        J Clin Neurosci. 2013; 20: 1207-1212
        • Hauser O.P.
        • Rand D.G.
        • Peysakhovich A.
        • Nowak M.A.
        Cooperating with the future.
        Nature. 2014; 511: 220-223
        • Eckelman M.
        • Mosher M.
        • Gonzalez A.
        • Sherman J.
        Comparative life cycle assessment of disposable and reusable laryngeal mask airways.
        Anesth Analg. 2012; 114: 1067-1072
        • Sherman J.D.
        • Raibley L.A.
        • Eckelman M.J.
        Life cycle assessment and costing methods for device procurement: comparing reusable and single-use disposable laryngoscopes.
        Anesth Analg. 2018; 127: 434-443
        • Petre M.A.
        • Malherbe S.
        Environmentally sustainable perioperative medicine: simple strategies for anesthetic practice.
        Can J Anesth. 2020; 67: 1044-1063
        • McGain F.
        • Story D.
        • Lim T.
        • McAlister S.
        Financial and environmental costs of reusable and single-use anaesthetic equipment.
        Br J Anaesth. 2017; 118: 862-869
        • McGain F.
        • McAlister S.
        • McGavin A.
        • Story D.
        A life cycle assessment of reusable and single-use central venous catheter insertion kits.
        Anesth Analg. 2012; 114: 1073-1080
        • Yeoh C.B.
        • Lee K.J.
        • Mathias S.
        • Tollinche L.E.
        Challenges of going green in the operating room.
        Anaesth Surg. 2020; 2000527
        • McGain F.
        • Algie C.M.
        • O'Toole J.
        • Lim T.F.
        • Mohebbi M.
        • Story D.A.
        • et al.
        The microbiological and sustainability effects of washing anaesthesia breathing circuits less frequently.
        Anaesthesia. 2014; 69: 337-342
        • Thiel C.L.
        • Schehlein E.
        • Ravilla T.
        • Ravindran R.D.
        • Robin A.L.
        • Saeedi O.J.
        • et al.
        Cataract surgery and environmental sustainability: waste and lifecycle assessment of phacoemulsification at a private healthcare facility.
        J Cataract Refract Surg. 2017; 43: 1391-1398
        • Morris D.S.
        • Wright T.
        • Somner J.E.A.
        • Connor A.
        The carbon footprint of cataract surgery.
        Eye. 2013; 27: 495-501
        • Day A.C.
        • Donachie P.H.J.
        • Sparrow J.M.
        • Johnston R.L.
        The Royal College of Ophthalmologists’ National Ophthalmology Database study of cataract surgery: report 1, visual outcomes and complications.
        Eye. 2015; 29: 552-560
        • Chang D.F.
        • Thiel C.L.
        Survey of cataract surgeons’ and nurses’ attitudes toward operating room waste.
        J Cataract Refract Surg. 2020; 46: 933-940
        • Thiel C.L.
        • Eckelman M.
        • Guido R.
        • Huddleston M.
        • Landis A.E.
        • Sherman J.
        • et al.
        Environmental impacts of surgical procedures: life cycle assessment of hysterectomy in the United States.
        Environ Sci Technol. 2015; 49: 1779-1786
        • Thiel C.L.
        • Woods N.C.
        • Bilec M.M.
        Strategies to reduce greenhouse gas emissions from laparoscopic surgery.
        Am J Public Health. 2018; 108: S158-S164
        • Thiel C.
        • Duncan P.
        • Woods N.
        Attitude of US obstetricians and gynaecologists to global warming and medical waste.
        J Health Serv Res Policy. 2017; 22: 162-167
        • Unger S.R.
        • Hottle T.A.
        • Hobbs S.R.
        • Thiel C.L.
        • Campion N.
        • Bilec M.M.
        • et al.
        Do single-use medical devices containing biopolymers reduce the environmental impacts of surgical procedures compared with their plastic equivalents?.
        J Health Serv Res Policy. 2017; 22: 218-225
        • van Demark R.E.
        • Smith V.J.S.
        • Fiegen A.
        Lean and green hand surgery.
        J Hand Surg. 2018; 43: 179-181
        • Bravo D.
        • Gaston R.G.
        • Melamed E.
        Environmentally responsible hand surgery: past, present, and future.
        J Hand Surg. 2020; 45: 444-448
        • Guetter C.R.
        • Williams B.J.
        • Slama E.
        • Arrington A.
        • Henry M.C.
        • Möller M.G.
        • et al.
        Greening the operating room.
        Am J Surg. 2018; 216: 683-688
        • World Health Organization
        Global guidelines for the prevention of surgical site infection. Appendix 17: Summary of the systematic review on drapes and gowns.
        WHO, Geneva2016 (Available at:) ([last accessed July 2022])
        • Siu J.
        • Hill A.G.
        • MacCormick A.D.
        Systematic review of reusable versus disposable laparoscopic instruments: costs and safety.
        ANZ J Surg. 2017; 87: 28-33
        • Park K.Y.
        • Russell J.I.
        • Wilke N.P.
        • Marka N.A.
        • Nichol P.F.
        Reducing cost and waste in pediatric laparoscopic procedures.
        J Pediatr Surg. 2021; 56: 66-70
        • Sanabria A.
        • Kowalski L.P.
        • Nixon I.J.
        • Shaha A.
        • De Bree R.
        • Mäkitie A.A.
        • et al.
        Considerations for environmentally sustainable head and neck surgical oncology practice.
        Am J Otolaryngol Head Neck Med Surg. 2020; 41102719
        • Kaplan S.
        • Sadler B.
        • Little K.
        • Franz C.
        • Orris P.
        Can sustainable hospitals help bend the health care cost curve?.
        Issue Brief (Commonw Fund). 2012; 29: 1-14
        • Grantcharov P.
        • Ahmed S.
        • Wac K.
        • Rivas H.
        Reprocessing and reuse of single-use medical devices: perceptions and concerns of relevant stakeholders toward current practices.
        Int J Evid-Based Healthcare. 2019; 17: 53-57
        • Overcash M.
        A comparison of reusable and disposable perioperative textiles: sustainability state-of-the-art 2012.
        Anesth Analg. 2012; 114: 1055-1066
        • Vozzola E.
        • Overcash M.
        • Griffing E.
        An environmental analysis of reusable and disposable surgical gowns.
        AORN J. 2020; 111: 315-325
        • Beloeil H.
        • Albaladejo P.
        Initiatives to broaden safety concerns in anaesthetic practice: the green operating room.
        Best Pract Res Clin Anaesthesiol. 2021; 35: 83-91
        • Vozzola E.
        • Overcash M.
        • Griffing E.
        Environmental considerations in the selection of isolation gowns: a life cycle assessment of reusable and disposable alternatives.
        Am J Infect Control. 2018; 46: 881-886
        • US Food and Drug Administration
        Medical gowns. Silver Spring.
        FDA, MD2018 (Available at:) ([last accessed October 2019])
        • McGain F.
        • Ma S.C.
        • Burrell R.H.
        • Percival V.G.
        • Roessler P.
        • Weatherall A.D.
        • et al.
        Why be sustainable? The Australian and New Zealand College of Anaesthetists Professional Document PS64: Statement on environmental sustainability in anaesthesia and pain medicine practice and its accompanying background paper.
        Anaesth Intens Care. 2019; 47: 413-422
        • Yates E.F.
        • Bowder A.N.
        • Roa L.
        • Velin L.
        • Goodman A.S.
        • Nguyen L.L.
        • et al.
        Empowering surgeons, anesthesiologists, and obstetricians to incorporate environmental sustainability in the operating room.
        Ann Surg. 2021; 273: 1108-1114
        • Jarvis I.
        Operating room ventilation systems. Best practices guide for energy efficiency, health and safety.
        (Ontario, Toronto)2017 (Available at:) ([last accessed July 2022])
        • Teke A.
        • Timur O.
        Assessing the energy efficiency improvement potentials of HVAC systems considering economic and environmental aspects at the hospitals.
        Renew Sust Energ Rev. 2014; 33: 224-235
        • McGain F.
        • Muret J.
        • Lawson C.
        • Sherman J.D.
        Environmental sustainability in anaesthesia and critical care.
        Br J Anaesth. 2020; 125: 680-692
        • Lee S.T.
        • Liang C.C.
        • Chien T.Y.
        • Wu F.J.
        • Fan K.C.
        • Wan G.H.
        Effect of ventilation rate on air cleanliness and energy consumption in operation rooms at rest.
        Environ Monitor Assess. 2018; 190: 178
        • Traversari A.A.L.
        • Bottenheft C.
        • van Heumen S.P.M.
        • Goedhart C.A.
        • Vos M.C.
        Effect of switching off unidirectional downflow systems of operating theaters during prolonged inactivity on the period before the operating theater can safely be used.
        Am J Infect Control. 2017; 45: 139-144
        • Dettenkofer M.
        • Scherrer M.
        • Hoch V.
        • Glaser H.
        • Schwarzer G.
        • Zentner J.
        • et al.
        Shutting down operating theater ventilation when the theater is not in use: infection control and environmental aspects.
        Infect Control Hosp Epidemiol. 2003; 24: 596-600
        • Lin J.
        • Pai J.Y.
        • Chen C.C.
        Applied patent RFID systems for building reacting HEPA air ventilation system in hospital operation rooms.
        J Med Syst. 2012; 36: 3399-3405
        • Rizan C.
        • Steinbach I.
        • Nicholson R.
        • Lillywhite R.
        • Reed M.
        • Bhutta M.F.
        The carbon footprint of surgical operations: a systematic review.
        Ann Surg. 2020; 272: 986-995
        • European Centre for Disease Prevention and Control
        Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals 2011–2012.
        ECDC, Stockholm2013
        • Friedericy H.J.
        • Sperna Weiland N.H.
        • van der Eijk A.C.
        • Jansen F.W.
        [Steps for reducing the carbon footprint of the operating room].
        NTvG, Amsterdam2019 (Available at:) ([in Dutch])
        • Chang D.F.
        Needless waste and the sustainability of cataract surgery.
        Ophthalmology. 2020; 127: 1600-1602
      2. Barker K. We need to talk about Des. Inverness: Healthcare Without Harm; 2019. Available at: https://noharm-europe.org/articles/blog/europe/we-need-talk-about-des [last accessed July 2022].

        • Gordon D.
        Sustainability in the operating room: reducing our impact on the planet.
        Anesthesiol Clin. 2020; 38: 679-692
        • Romeo M.
        • Rovere G.
        • Stramazzo L.
        • Liuzza F.
        • Camarda L.
        Single use instruments for total knee arthroplasty.
        Medicinski Glasnik. 2021; 18: 1-5
        • Conrardy J.
        • Hillanbrand M.
        • Myers S.
        • Nussbaum G.F.
        Reducing medical waste.
        AORN J. 2010; 91: 711-721
        • Agodi A.
        • Auxilia F.
        • Barchitta M.
        • Cristina M.L.
        • D'Alessandro D.
        • Mura I.
        • et al.
        Operating theatre ventilation systems and microbial air contamination in total joint replacement surgery: results of the GISIO-ISChIA study.
        J Hosp Infect. 2015; 90: 213-219
        • Alsved M.
        • Civilis A.
        • Ekolind P.
        • Tammelin A.
        • Andersson A.E.
        • Jakobsson J.
        • et al.
        Temperature-controlled airflow ventilation in operating rooms compared with laminar airflow and turbulent mixed airflow.
        J Hosp Infect. 2018; 98: 181-190
        • Erichsen Andersson A.
        • Petzold M.
        • Bergh I.
        • Karlsson J.
        • Eriksson B.I.
        • Nilsson K.
        Comparison between mixed and laminar airflow systems in operating rooms and the influence of human factors: experiences from a Swedish orthopedic center.
        Am J Infect Control. 2014; 42: 665-669
        • D’Amico A.
        • Montagna M.T.
        • Caggiano G.
        • De Giglio O.
        • Rutigliano S.
        • Lopuzzo M.
        • et al.
        Observational study on hospital building heritage and microbiological air quality in the orthopedic operating theater: the IM.PA.C.T. Project.
        Ann Ig. 2019; 31: 482-495
        • Hooper G.J.
        • Rothwell A.G.
        • Frampton C.
        • Wyatt M.C.
        Does the use of laminar flow and space suits reduce early deep infection after total hip and knee replacement? The ten-year results of the New Zealand Joint Registry.
        J Bone Joint Surg Br. 2011; 93: 85-90
        • Montagna M.T.
        • Rutigliano S.
        • Trerotoli P.
        • Napoli C.
        • Apollonio F.
        • D’Amico A.
        • et al.
        Evaluation of air contamination in orthopaedic operating theatres in hospitals in Southern Italy: the IMPACT project.
        Int J Environ Res Publ Health. 2019; 16: 3581
        • Wagner J.A.
        • Greeley D.G.
        • Gormley T.C.
        • Markel T.A.
        Comparison of operating room air distribution systems using the environmental quality indicator method of dynamic simulated surgical procedures.
        Am J Infect Control. 2019; 47: e1-e6
        • Brandt C.
        • Hott U.
        • Sohr D.
        • Daschner F.
        • Gastmeier P.
        • Rüden H.
        Operating room ventilation with laminar airflow shows no protective effect on the surgical site infection rate in orthopedic and abdominal surgery.
        Ann Surg. 2008; 248: 695-700
        • Gormley T.
        • Markel T.A.
        • Jones H.
        • Greeley D.
        • Ostojic J.
        • Clarke J.H.
        • et al.
        Cost–benefit analysis of different air change rates in an operating room environment.
        Am J Infect Control. 2017; 45: 1318-1323
        • Pada S.
        • Perl T.M.
        Operating room myths: what is the evidence for common practices.
        Curr Opin Infect Dis. 2015; 28: 369-374
        • Squeri R.
        • Genovese C.
        • Trimarchi G.
        • Antonuccio G.M.
        • Alessi V.
        • Squeri A.
        • et al.
        Nine years of microbiological air monitoring in the operating theatres of a university hospital in Southern Italy.
        Ann Ig. 2019; 31: 1-12
        • Tejero-González A.
        • DeFreitas-Barros-Galvão V.M.
        • Zarzuelo-Sánchez A.M.
        • SanJosé-Alonso J.F.
        Energy use optimization in ventilation of operating rooms during inactivity periods.
        Build Res Inform. 2021; 49: 308-324
        • Petre M.A.
        • Bahrey L.
        • Levine M.
        • van Rensburg A.
        • Crawford M.
        • Matava C.
        A national survey on attitudes and barriers on recycling and environmental sustainability efforts among Canadian anesthesiologists: an opportunity for knowledge translation.
        Can J Anesth. 2019; 66: 272-286
        • Chaplin C.L.
        • Wernham A.G.H.
        • Veitch D.
        Environmental sustainability in dermatological surgery.
        Br J Dermatol. 2021; 184: 952-953
        • Campion N.
        • Thiel C.L.
        • DeBlois J.
        • Woods N.C.
        • Landis A.E.
        • Bilec M.M.
        Life cycle assessment perspectives on delivering an infant in the US.
        Sci Total Environ. 2012; 425: 191-198
        • Kagoma Y.K.
        • Stall N.
        • Rubinstein E.
        • Naudie D.
        People, planet and profits: the case for greening operating rooms.
        CMAJ. 2012; 184: 1905-1911
        • World Health Organization
        Global guidelines for the prevention of surgical site infection.
        2nd ed. WHO, Geneva2018 (Available at:) ([last accessed July 2022])
        • Centers for Disease Control and Prevention
        Guideline for the prevention of surgical site infection.
        CDC, Atlanta, GA2017 (Available at:) ([last accessed July 2022])
      3. National Institute for Health and Care Excellence. Joint replacement (primary): hip, knee and shoulder. NICE Guideline 157. London: NICE; 2020. Available at: https://www.nice.org.uk/guidance/ng157 [last accessed July 2022].

        • Laustsen G.
        Reduce–recycle–reuse: guidelines for promoting perioperative waste management.
        AORN J. 2007; 85: 717-728
        • Dyas A.R.
        • Lovell K.M.
        • Balentine C.J.
        • Wang T.N.
        • Porterfield Jr., J.R.
        • Chen H.
        • et al.
        Reducing cost and improving operating room efficiency: examination of surgical instrument processing.
        J Surg Res. 2018; 229: 15-19
        • Canadian Institute for Health Information
        Unnecessary care in Canada. Ontario: CIHI.
        2017 (Available at:) ([last accessed July 2022])
        • Chalmers K.
        • Smith P.
        • Garber J.
        • Gopinath V.
        • Brownlee S.
        • Schwartz A.
        • et al.
        Assessment of overuse of medical tests and treatments at US hospitals using Medicare claims.
        JAMA Network Open. 2021; 4e218075
        • Wormer B.A.
        • Augenstein V.A.
        • Carpenter C.L.
        • Burton P.V.
        • Yokeley W.T.
        • Prabhu A.S.
        • et al.
        The green operating room: simple changes to reduce cost and our carbon footprint.
        Am Surg. 2013; 79: 666-671
        • McGain F.
        • White S.
        • Mossenson S.
        • Kayak E.
        • Story D.
        A survey of anesthesiologists' views of operating room recycling.
        Anesth Analg. 2012; 114: 1049-1054
        • Azouz S.
        • Boyll P.
        • Swanson M.
        • Castel N.
        • Maffi T.
        • Rebecca A.M.
        Managing barriers to recycling in the operating room.
        Am J Surg. 2019; 217: 634-638
      4. Prüss A. Giroult E. Rushbrook P. Safe management of wastes from health-care activities. WHO, Geneva1999 (Available at:) ([last accessed July 2022])
        • Environment Agency
        Healthcare waste: appropriate measures for permitted facilities.
        Environment Agency, London2020 (Available at:) ([last accessed July 2022])
        • Dri M.
        • Canfora P.
        • Antonopoulos I.S.
        • Gaudillat P.
        Best environmental management practice for the waste management sector.
        Luxembourg: European Union, 2018 (Available at:) ([last accessed July 2022])
        • Simons L.
        • Nijhof A.
        Changing the game: sustainable market transformation strategies to understand and tackle the big and complex sustainability challenges of our generation.
        Routledge, London2021