Advertisement

Evaluation of zone disinfection by air-passable plasma filter in a novel chamber model

  • Author Footnotes
    † These authors contributed equally to this work.
    K.H. Baek
    Footnotes
    † These authors contributed equally to this work.
    Affiliations
    Department of Nano-Bio Convergence, Korea Institute of Materials Science, Changwon, Republic of Korea
    Search for articles by this author
  • Author Footnotes
    † These authors contributed equally to this work.
    S.-J. Kim
    Footnotes
    † These authors contributed equally to this work.
    Affiliations
    Department of Nano-Bio Convergence, Korea Institute of Materials Science, Changwon, Republic of Korea
    Search for articles by this author
  • T. Kim
    Affiliations
    Clinical Research Centre, Masan National Tuberculosis Hospital, Changwon, Republic of Korea
    Search for articles by this author
  • Y. Hwang
    Affiliations
    Clinical Research Centre, Masan National Tuberculosis Hospital, Changwon, Republic of Korea
    Search for articles by this author
  • J.Y. Park
    Affiliations
    Department of Nano-Bio Convergence, Korea Institute of Materials Science, Changwon, Republic of Korea
    Search for articles by this author
  • J.-Y. Yang
    Affiliations
    Department of Nano-Bio Convergence, Korea Institute of Materials Science, Changwon, Republic of Korea
    Search for articles by this author
  • S. Ryoo
    Correspondence
    Corresponding author. Address: Clinical Research Centre, Masan National Tuberculosis Hospital, Changwon 51755, Republic of Korea. Tel.: +82 (10) 3068 1815.
    Affiliations
    Clinical Research Centre, Masan National Tuberculosis Hospital, Changwon, Republic of Korea
    Search for articles by this author
  • S. Lee
    Correspondence
    Corresponding author. Address: Department of Nano-Bio Convergence, Korea Institute of Materials Science, Changwon 51508, Republic of Korea. Tel.: +82 (10) 7560 1010.
    Affiliations
    Department of Nano-Bio Convergence, Korea Institute of Materials Science, Changwon, Republic of Korea
    Search for articles by this author
  • Author Footnotes
    † These authors contributed equally to this work.

      Summary

      Background

      Disinfection of shared spaces has become essential to minimize the spread of various diseases. An efficient disinfection device that can simultaneously inactivate airborne bacteria and surface-adhered bacteria in an enclosed space is required.

      Aim

      An air-passable plasma filter (APF) was developed and applied to a chamber model to evaluate the efficacy of zone disinfection.

      Methods

      The 60 L chamber consisted of a nebulizer, circulation fans, temperature and humidity monitors, an air-sampling port with a sealed gate, airborne bacteria-trapping media, and a built-in fan for evaluation. After spraying each bacterial strain (Escherichia coli, Staphylococcus epidermidis, and Mycobacterium smegmatis) as a bioaerosol, airborne and surface-attached bacteria were quantified simultaneously to evaluate the zone-disinfection effect of APF.

      Findings

      The operation of APF in the 60 L chamber showed a complete zone-disinfection effect for E. coli (10 min), S. epidermidis (10 min), and M. smegmatis (60 min) present in the air and on the walls at various locations. The time required to completely disinfect each of the airborne bacteria and surface-attached bacteria within the same space was different.

      Conclusion

      APF has the potential to exhibit significant germicidal effects on various micro-organisms and can be an effective alternative for disinfection of enclosed spaces.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hospital Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Murdoch L.E.
        • Bailey L.
        • Banham E.
        • Watson F.
        • Adams N.M.T.
        • Chewins J.
        Evaluating different concentrations of hydrogen peroxide in an automated room disinfection system.
        Lett Appl Microbiol. 2016; 63: 178-182https://doi.org/10.1111/lam.12607
        • Bentancor M.
        • Vidal S.
        Programmable and low-cost ultraviolet room disinfection device.
        HardwareX. 2018; 4e00046https://doi.org/10.1016/j.ohx.2018.e00046
        • Kim D.K.
        • Kang D.H.
        UVC LED irradiation effectively inactivates aerosolized viruses, bacteria, and fungi in a chamber-type air disinfection system.
        Appl Environ Microbiol. 2018; 84 (e00944-18)https://doi.org/10.1128/AEM.00944-18
        • Steinmann J.
        • Burkard T.
        • Becker B.
        • Paulmann D.
        • Todt D.
        • Bischoff B.
        • et al.
        Virucidal efficacy of an ozone-generating system for automated room disinfection.
        J Hosp Infect. 2021; 116: 16-20https://doi.org/10.1016/j.jhin.2021.06.004
        • Nghi N.H.
        • Cuong L.C.
        • Dieu T.V.
        • Oanh D.T.Y.
        Air disinfection and food preservation by ozone gas.
        Vietnam J Chem. 2019; 57: 70-74https://doi.org/10.1002/vjch.201960011
        • Baek K.H.
        • Jang D.
        • Kim T.
        • Park J.Y.
        • Kim D.
        • Ryoo S.
        • et al.
        Instant inactivation of aerosolized SARS-CoV-2 by dielectric filter discharge.
        PLoS One. 2022; 17e0268049https://doi.org/10.1371/journal.pone.0268049
        • Dufresne S.
        • Leblond H.
        • Chaunet M.
        Relationship between lumen diameter and length sterilized in the 125L ozone sterilizer.
        Am J Infect Control. 2008; 36: 291-297
        • Luqueta G.R.
        • Santos E.D.
        • Pessoa R.S.
        • Maciel H.S.
        Evaluation of disposable medical device packaging materials under ozone sterilization.
        Res Biomed Engng. 2017; 33: 58-68https://doi.org/10.1590/2446-4740.03216
        • Rediguieri C.F.
        • De Bank P.A.
        • Zanin M.H.A.
        • Leo P.
        • Cerize N.N.P.
        • de Oliveira A.M.
        • et al.
        The effect of ozone gas sterilization on the properties and cell compatibility of electrospun polycaprolactone scaffolds.
        J Biomater Sci Polym Ed. 2017; 28: 1918-1934https://doi.org/10.1080/09205063.2017.1358549
        • Otter J.A.
        • Vickery K.
        • Walker J.T.
        • deLancey Pulcini E.
        • Stoodley P.
        • Goldenberg S.D.
        • et al.
        Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection.
        J Hosp Infect. 2015; 89: 16-27https://doi.org/10.1016/j.jhin.2014.09.008
        • Van Doremalen N.
        • Bushmaker T.
        • Morris D.H.
        • Holbrook M.G.
        • Gamble A.
        • Williamson B.N.
        • et al.
        Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1.
        N Engl J Med. 2020; 382: 1564-1567https://doi.org/10.1056/NEJMc2004973
        • Rutala W.A.
        • Weber D.J.
        Disinfection and sterilization: an overview.
        Am J Infect Control. 2013; 41: S2-S5https://doi.org/10.1016/j.ajic.2012.11.005
        • Xia T.
        • Kleinheksel A.
        • Lee E.M.
        • Qiao Z.
        • Wigginton K.R.
        • Clack H.L.
        Inactivation of airborne viruses using a packed bed non-thermal plasma reactor.
        J Phys D: Appl Phys. 2019; 52255201https://doi.org/10.1088/1361-6463/ab1466
        • Kramer B.
        • Warschat D.
        • Muranyi P.
        Disinfection of an ambulance using a compact atmospheric plasma device.
        J Appl Microbiol. 2022 May 3; ([online ahead of print])
        • Poirot J.L.
        • Gangneux J.P.
        • Fischer A.
        • Malbernard M.
        • Challier S.
        • Laudinet N.
        • et al.
        Evaluation of a new mobile system for protecting immune-suppressed patients against airborne contamination.
        Am J Infect Control. 2007; 35: 460-466https://doi.org/10.1016/j.ajic.2007.02.006
        • Bhartiya P.
        • Lim J.S.
        • Kaushik N.
        • Shaik A.M.
        • Shin Y.O.
        • Kaushik N.K.
        • et al.
        Nonthermal plasma-generated ozone inhibits human coronavirus 229E infectivity on glass surface.
        Plasma Process Polym. 2022; e2200054https://doi.org/10.1002/ppap.202200054
        • Franke G.
        • Knobling B.
        • Brill F.H.
        • Becker B.
        • Klupp E.M.
        • Belmar Campos C.
        • et al.
        An automated room disinfection system using ozone is highly active against surrogates for SARS-CoV-2.
        J Hosp Infect. 2021; 112: 108-113https://doi.org/10.1016/j.jhin.2021.04.007
        • Bansal-Mutalik R.
        • Nikaido H.
        Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides.
        Proc Natl Acad Sci USA. 2014; 111: 4958-4963https://doi.org/10.1073/pnas.1403078111
        • Ki S.H.
        • Masur K.
        • Baik K.Y.
        • Choi E.H.
        Effects of humidity on room disinfection by dielectric barrier discharge plasma.
        J Phys D Appl Phys. 2019; 52425204https://doi.org/10.1088/1361-6463/ab3066
        • Lai A.C.K.
        • Cheung A.C.T.
        • Wong M.M.L.
        • Li W.S.
        Evaluation of cold plasma inactivation efficacy against different airborne bacteria in ventilation duct flow.
        Build Environ. 2016; 98: 39-46https://doi.org/10.1016/j.buildenv.2015.12.005
        • Mahfoudh A.
        • Moisan M.
        • Séguin J.
        • Barbeau J.
        • Kabouzi Y.
        • Kéroack D.
        Inactivation of vegetative and sporulated bacteria by dry gaseous ozone.
        Ozone Sci Eng. 2010; 32: 180-198https://doi.org/10.1080/01919511003791971
        • World Health Organization, Occupational and Environmental Health Team
        WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment.
        WHO, Geneva2006