Advertisement

Biocide resistance in Acinetobacter baumannii: appraising the mechanisms

  • E.S. Milani
    Affiliations
    Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran

    Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
    Search for articles by this author
  • A. Hasani
    Correspondence
    Corresponding author. Address: Infectious and Tropical Diseases Research Centre, Clinical Research Development Unit, Sina Educational, Research and Treatment Centre, and Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
    Affiliations
    Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran

    Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

    Clinical Research Development Unit, Sina Educational, Research and Treatment Centre, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
    Search for articles by this author
  • M. Varschochi
    Affiliations
    Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
    Search for articles by this author
  • J. Sadeghi
    Affiliations
    Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
    Search for articles by this author
  • M.Y. Memar
    Affiliations
    Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
    Search for articles by this author
  • A. Hasani
    Affiliations
    Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
    Search for articles by this author
Published:September 21, 2021DOI:https://doi.org/10.1016/j.jhin.2021.09.010

      Summary

      A global upsurge in antibiotic-resistant Acinetobacter baumannii requires supervised selection of biocides and disinfectants to avert nosocomial infections by reducing its spread. Moreover, inadequate and improper biocides have been reported as a contributing factor in antimicrobial resistance. Regardless of the manner of administration, a biocidal concentration that does not kill the target bacteria creates a stress response, propagating the resistance mechanisms. This is an essential aspect of the disinfection programme and the overall bio-contamination management plan. Knowing the mechanisms of action of biocides and resistance modalities may open new avenues to discover novel agents. This review describes the mechanisms of action of some biocides, resistance mechanisms, and approaches to study susceptibility/resistance to these agents.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hospital Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Eze E.C.
        • Chenia H.Y.
        • El Zowalaty M.E.
        Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments.
        Infect Drug Resist. 2018; 11: 2277
        • Pakharukova N.
        • Tuittila M.
        • Paavilainen S.
        • Malmi H.
        • Parilova O.
        • Teneberg S.
        • et al.
        Structural basis for Acinetobacter baumannii biofilm formation.
        Proc Natl Acad Sci. 2018; 115: 5558-5563
        • A'shimi M.H.N.
        • Alattraqchi A.G.
        • Rani F.M.
        • Rahman N.I.A.
        • Ismail S.
        • Abdullah F.H.
        • et al.
        Biocide susceptibilities and biofilm-forming capacities of Acinetobacter baumannii clinical isolates from Malaysia.
        J Infect Dev Ctries. 2019; 13: 626-633
        • Asif M.
        • Alvi I.A.
        • Rehman S.U.
        Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities.
        Infect Drug Resist. 2018; 11: 1249
        • Garnacho-Montero J.
        • Timsit J.-F.
        Managing Acinetobacter baumannii infections.
        Curr Opin Infect Dis. 2019; 32: 69-76
        • Lanjri S.
        • Uwingabiye J.
        • Frikh M.
        • Abdellatifi L.
        • Kasouati J.
        • Maleb A.
        • et al.
        In vitro evaluation of the susceptibility of Acinetobacter baumannii isolates to antiseptics and disinfectants: comparison between clinical and environmental isolates.
        Antimicrob Resist Infect Control. 2017; 6: 1-7
        • Bravo Z.
        • Orruño M.
        • Navascues T.
        • Ogayar E.
        • Ramos-Vivas J.
        • Kaberdin V.
        • et al.
        Analysis of Acinetobacter baumannii survival in liquid media and on solid matrices as well as effect of disinfectants.
        J Hosp Infect. 2019; 103: e42-52
        • Weinberg S.
        • Villedieu A.
        • Bagdasarian N.
        • Karah N.
        • Teare L.
        • Elamin W.
        Control and management of multidrug resistant Acinetobacter baumannii: a review of the evidence and proposal of novel approaches.
        Infect Prev Pract. 2020; 2: 100077
        • Monem S.
        • Furmanek-Blaszk B.
        • Łupkowska A.
        • Kuczyńska-Wiśnik D.
        • Stojowska-Swędrzyńska K.
        • Laskowska E.
        Mechanisms protecting Acinetobacter baumannii against multiple stresses triggered by the host immune response, antibiotics, and outside host environment.
        Int J Mol Sci. 2020; 21: 5498
        • Raorane C.J.
        • Lee J.-H.
        • Lee J.
        Rapid killing and biofilm inhibition of multidrug-resistant Acinetobacter baumannii strains and other microbes by iodoindoles.
        Biomolecules. 2020; 10: 1186
        • Lynch J.P.
        • Zhanel G.G.
        • Clark N.M.
        Infections due to Acinetobacter baumannii in the ICU: treatment options.
        Semin Respir Crit Care Med. 2017; 38: 311-325
        • Nasr P.
        Genetics, epidemiology, and clinical manifestations of multidrug-resistant Acinetobacter baumannii.
        J Hosp Infect. 2020; 104: 4-11
        • Biswas D.
        • Tiwari M.
        • Tiwari V.
        Molecular mechanism of antimicrobial activity of chlorhexidine against carbapenem-resistant Acinetobacter baumannii.
        PLoS One. 2019; 14e0224107
        • Garnacho-Montero J.
        • Dimopoulos G.
        • Poulakou G.
        • Akova M.
        • Cisneros J.M.
        • De Waele J.
        • et al.
        Task force on management and prevention of Acinetobacter baumannii infections in the ICU.
        Intensive Care Med. 2015; 41: 2057-2075
        • Li L.
        • Short F.
        • Hassan K.
        • Naidu V.
        • Pokhrel A.
        • Nagy S.
        • et al.
        Genomic fitness profiling of Acinetobacter baumannii reveals modes of action for common biocides and mechanisms of biocide-antibiotic antagonism.
        2021https://doi.org/10.21203/rs.3.rs-157820/v1
        • Vahhabi A.
        • Hasani A.
        • Rezaee M.A.
        • Baradaran B.
        • Hasani A.
        • Samadi Kafil H.
        • et al.
        A plethora of carbapenem resistance in Acinetobacter baumannii: no end to a long insidious genetic journey.
        J Chemother. 2021; 33: 137-155
        • Zhang J.
        • Xu L.-L.
        • Gan D.
        • Zhang X.
        In vitro study of bacteriophage AB3 endolysin LysAB3 activity against Acinetobacter baumannii biofilm and biofilm-bound A. baumannii.
        Clin Lab. 2018; 64: 1021-1030
        • Charretier Y.
        • Diene S.M.
        • Baud D.
        • Chatellier S.
        • Santiago-Allexant E.
        • van Belkum A.
        • et al.
        Colistin heteroresistance and involvement of the PmrAB regulatory system in Acinetobacter baumannii.
        Antimicrob Agents Chemother. 2018; 62 (:e00788-18)
        • Ivanković T.
        • Goić-Barišić I.
        • Hrenović J.
        Reduced susceptibility to disinfectants of Acinetobacter baumannii biofilms on glass and ceramic.
        Arh Hig Rada Toksikol. 2017; 68: 99-107
        • Vahhabi A.
        • Hasani A.
        • Rezaee M.A.
        • Baradaran B.
        • Hasani A.
        • Kafil H.S.
        • et al.
        Carbapenem resistance in Acinetobacter baumannii clinical isolates from northwest Iran: high prevalence of OXA genes in sync.
        Iran J Microbiol. 2021; 13: 282-293
        • Colquhoun J.M.
        • Rather P.N.
        Insights into mechanisms of biofilm formation in Acinetobacter baumannii and implications for uropathogenesis.
        Front Cell Infect Microbiol. 2020; 10: 253
        • Lin F.
        • Xu Y.
        • Chang Y.
        • Liu C.
        • Jia X.
        • Ling B.
        Molecular characterization of reduced susceptibility to biocides in clinical isolates of Acinetobacter baumannii.
        Front Microbiol. 2017; 8: 1836
        • Vijayakumar R.
        • Sandle T.
        A review on biocide reduced susceptibility due to plasmid-borne antiseptic-resistant genes – special notes on pharmaceutical environmental isolates.
        J Appl Microbiol. 2019; 126: 1011-1022
        • Bock L.J.
        Bacterial biocide resistance: a new scourge of the infectious disease world?.
        Arch Dis Child. 2019; 104: 1029-1033
        • Liu W.-L.
        • Liang H.-W.
        • Lee M.-F.
        • Lin H.-L.
        • Lin Y.-H.
        • Chen C.-C.
        • et al.
        The impact of inadequate terminal disinfection on an outbreak of imipenem-resistant Acinetobacter baumannii in an intensive care unit.
        PLoS One. 2014; 9e107975
        • Sebit B.
        • Aksu B.
        • Karahasan Yagci A.
        Biofilm production and biocidal efficacy in multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii isolates.
        Int J Antisep Disinfect Steril. 2016; 1: 7-12
        • Gnanadhas D.P.
        • Marathe S.A.
        • Chakravortty D.
        Biocides – resistance, cross-resistance mechanisms and assessment.
        Exp Opin Investig Drugs. 2013; 22: 191-206
        • Gerba C.P.
        Quaternary ammonium biocides: efficacy in application.
        Appl Environ Microbiol. 2015; 81: 464-469
        • Knauf G.A.
        • Cunningham A.L.
        • Kazi M.I.
        • Riddington I.M.
        • Crofts A.A.
        • Cattoir V.
        • et al.
        Exploring the antimicrobial action of quaternary amines against Acinetobacter baumannii.
        MBio. 2018; 9 (:e02394-17)
        • Williamson D.A.
        • Carter G.P.
        • Howden B.P.
        Current and emerging topical antibacterials and antiseptics: agents, action, and resistance patterns.
        Clin Microbiol Rev. 2017; 30: 827-860
        • Huang S.S.
        • Septimus E.
        • Kleinman K.
        • Moody J.
        • Hickok J.
        • Avery T.R.
        • et al.
        Targeted versus universal decolonization to prevent ICU infection.
        N Engl J Med. 2013; 368: 2255-2265
        • Macias J.H.
        • Alvarez M.F.
        • Arreguin V.
        • Muñoz J.M.
        • Macias A.E.
        • Alvarez J.A.
        Chlorhexidine avoids skin bacteria recolonization more than triclosan.
        Am J Infect Control. 2016; 44: 1530-1534
        • Günther F.
        • Kaiser S.
        • Fries T.
        • Frank U.
        • Mutters N.
        Susceptibility of multidrug resistant clinical pathogens to a chlorhexidine formulation.
        J Prev Med Hyg. 2015; 56: E176
        • Bonez P.C.
        • dos Santos Alves C.F.
        • Dalmolin T.V.
        • Agertt V.A.
        • Mizdal C.R.
        • da Costa Flores V.
        • et al.
        Chlorhexidine activity against bacterial biofilms.
        Am J Infect Control. 2013; 41: e119-e122
        • Linley E.
        • Denyer S.P.
        • McDonnell G.
        • Simons C.
        • Maillard J.-Y.
        Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action.
        J Antimicrob Chemother. 2012; 67: 1589-1596
        • Horn K.
        • Otter J.A.
        Hydrogen peroxide vapor room disinfection and hand hygiene improvements reduce Clostridium difficile infection, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and extended-spectrum β-lactamase.
        Am J Infect Control. 2015; 43: 1354-1356
        • Chmielarczyk A.
        • Higgins P.
        • Wojkowska-Mach J.
        • Synowiec E.
        • Zander E.
        • Romaniszyn D.
        • et al.
        Control of an outbreak of Acinetobacter baumannii infections using vaporized hydrogen peroxide.
        J Hosp Infect. 2012; 81: 239-245
        • Eggers M.
        • Koburger-Janssen T.
        • Eickmann M.
        • Zorn J.
        In vitro bactericidal and virucidal efficacy of povidone-iodine gargle/mouthwash against respiratory and oral tract pathogens.
        Infect Dis Ther. 2018; 7: 249-259
        • Hosseini H.
        • Ashraf M.J.
        • Saleh M.
        • Nowroozzadeh M.H.
        • Nowroozizadeh B.
        • Abtahi M.B.
        • et al.
        Effect of povidone-iodine concentration and exposure time on bacteria isolated from endophthalmitis cases.
        J Cataract Refract Surg. 2012; 38: 92-96
        • Khan F.A.
        • Hussain M.A.
        • Khan Niazi S.
        • Haq Z.
        • Akhtar N.
        Efficacy of 2.5% and 1.25% povidone-iodine solution for prophylaxis of ophthalmia neonatorum.
        J Coll Physicians Surg Pak. 2016; 26: 121-124
        • McNamara P.J.
        • Levy S.B.
        Triclosan: an instructive tale.
        Antimicrob Agents Chemother. 2016; 60: 7015-7016
        • Golin A.P.
        • Choi D.
        • Ghahary A.
        Hand sanitizers: a review of ingredients, mechanisms of action, modes of delivery, and efficacy against coronaviruses.
        Am J Infect Control. 2020; 48: 1062-1067
        • Haft R.J.
        • Keating D.H.
        • Schwaegler T.
        • Schwalbach M.S.
        • Vinokur J.
        • Tremaine M.
        • et al.
        Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria.
        Proc Natl Acad Sci. 2014; 111: E2576-E2585
        • Maillard J.Y.
        Resistance of bacteria to biocides.
        Microbiol Spectr. 2018; 6: 109-126
        • Di Domenico E.G.
        • Farulla I.
        • Prignano G.
        • Gallo M.T.
        • Vespaziani M.
        • Cavallo I.
        • et al.
        Biofilm is a major virulence determinant in bacterial colonization of chronic skin ulcers independently from the multidrug resistant phenotype.
        Int J Mol Sci. 2017; 18: 1077
        • Ramalingam K.
        • Lee V.
        Biotic and abiotic substrates for enhancing Acinetobacter baumannii biofilm formation: new approach using extracellular matrix and slanted coverslip technique.
        J Gen Appl Microbiol. 2019; 65: 64-71
        • Greene C.
        • Wu J.
        • Rickard A.H.
        • Xi C.
        Evaluation of the ability of Acinetobacter baumannii to form biofilms on six different biomedical relevant surfaces.
        Lett Appl Microbiol. 2016; 63: 233-239
        • Giles S.K.
        • Stroeher U.H.
        • Eijkelkamp B.A.
        • Brown M.H.
        Identification of genes essential for pellicle formation in Acinetobacter baumannii.
        BMC Microbiol. 2015; 15: 1-14
        • Wassenaar T.
        • Ussery D.
        • Nielsen L.
        • Ingmer H.
        Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species.
        Eur J Microbiol Immunol. 2015; 5: 44-61
        • Martínez-Suárez J.V.
        • Ortiz S.
        • López-Alonso V.
        Potential impact of the resistance to quaternary ammonium disinfectants on the persistence of Listeria monocytogenes in food processing environments.
        Front Microbiol. 2016; 7: 638
        • Sánchez M.B.
        • Decorosi F.
        • Viti C.
        • Oggioni M.R.
        • Martínez J.L.
        • Hernández A.
        Predictive studies suggest that the risk for the selection of antibiotic resistance by biocides is likely low in Stenotrophomonas maltophilia.
        PLoS One. 2015; 10e0132816
        • Mc Carlie S.
        • Boucher C.E.
        • Bragg R.R.
        Molecular basis of bacterial disinfectant resistance.
        Drug Resist Updat. 2020; 48: 100672
        • Partridge S.R.
        • Kwong S.M.
        • Firth N.
        • Jensen S.O.
        Mobile genetic elements associated with antimicrobial resistance.
        Clin Microbiol Rev. 2018; 31 (:e00088-17)
        • Vandecraen J.
        • Chandler M.
        • Aertsen A.
        • Van Houdt R.
        The impact of insertion sequences on bacterial genome plasticity and adaptability.
        Crit Rev Microbiol. 2017; 43: 709-730
        • Furi L.
        • Haigh R.
        • Al Jabri Z.J.
        • Morrissey I.
        • Ou H.-Y.
        • León-Sampedro R.
        • et al.
        Dissemination of novel antimicrobial resistance mechanisms through the insertion sequence mediated spread of metabolic genes.
        Front Microbiol. 2016; 7: 1008
        • Blackwell G.A.
        • Hamidian M.
        • Hall R.M.
        IncM plasmid R1215 is the source of chromosomally located regions containing multiple antibiotic resistance genes in the globally disseminated Acinetobacter baumannii GC1 and GC2 clones.
        MSphere. 2016; 1 (:e00117-16)
        • Khan S.
        • Beattie T.K.
        • Knapp C.W.
        Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water.
        Chemosphere. 2016; 152: 132-141
        • Kim M.
        • Hatt J.K.
        • Weigand M.R.
        • Krishnan R.
        • Pavlostathis S.G.
        • Konstantinidis K.T.
        Genomic and transcriptomic insights into how bacteria withstand high concentrations of benzalkonium chloride biocides.
        Appl Environ Microbiol. 2018; 84 (:e00197-18)
        • Delavat F.
        • Miyazaki R.
        • Carraro N.
        • Pradervand N.
        • van der Meer J.R.
        The hidden life of integrative and conjugative elements.
        FEMS Microbiol Rev. 2017; 41: 512-537
        • Johnson C.M.
        • Grossman A.D.
        Integrative and conjugative elements (ICEs): what they do and how they work.
        Ann Rev Genet. 2015; 49: 577-601
        • Martinez E.
        • Marquez C.
        • Ingold A.
        • Merlino J.
        • Djordjevic S.P.
        • Stokes H.
        • et al.
        Diverse mobilized class 1 integrons are common in the chromosomes of pathogenic Pseudomonas aeruginosa clinical isolates.
        Antimicrob Agents Chemother. 2012; 56: 2169-2172
        • Trappe K.
        • Marschall T.
        • Renard B.Y.
        Detecting horizontal gene transfer by mapping sequencing reads across species boundaries.
        Bioinformatics. 2016; 32: i595-604
        • Schug A.R.
        • Bartel A.
        • Scholtzek A.D.
        • Meurer M.
        • Brombach J.
        • Hensel V.
        • et al.
        Biocide susceptibility testing of bacteria: development of a broth microdilution method.
        Vet Microbiol. 2020; 248: 108791
        • Morrissey I.
        • Oggioni M.R.
        • Knight D.
        • Curiao T.
        • Coque T.
        • Kalkanci A.
        • et al.
        Evaluation of epidemiological cut-off values indicates that biocide resistant subpopulations are uncommon in natural isolates of clinically-relevant microorganisms.
        PLoS One. 2014; 9e86669
        • Bondarenko O.M.
        • Sihtmäe M.
        • Kuzmičiova J.
        • Ragelienė L.
        • Kahru A.
        • Daugelavičius R.
        Plasma membrane is the target of rapid antibacterial action of silver nanoparticles in Escherichia coli and Pseudomonas aeruginosa.
        Int J Nanomed. 2018; 13: 6779
        • Salas-Tovar J.A.
        • Escobedo-García S.
        • Olivas G.I.
        • Acosta-Muñiz C.H.
        • Harte F.
        • Sepulveda D.R.
        Method-induced variation in the bacterial cell surface hydrophobicity MATH test.
        J Microbiol Methods. 2021; 185: 106234
        • Bridier A.
        • Dubois-Brissonnet F.
        • Greub G.
        • Thomas V.
        • Briandet R.
        Dynamics of the action of biocides in Pseudomonas aeruginosa biofilms.
        Antimicrob Agents Chemother. 2011; 55: 2648-2654
        • Huang H.
        • Yang Z.-L.
        • Wu X.-M.
        • Wang Y.
        • Liu Y.-J.
        • Luo H.
        • et al.
        Complete genome sequence of Acinetobacter baumannii MDR-TJ and insights into its mechanism of antibiotic resistance.
        J Antimicrob Chemother. 2012; 67: 2825-2832
        • Maseda H.
        • Hashida Y.
        • Shirai A.
        • Omasa T.
        • Nakae T.
        Mutation in the sdeS gene promotes expression of the sdeAB efflux pump genes and multidrug resistance in Serratia marcescens.
        Antimicrob Agents Chemother. 2011; 55: 2922-2926
        • Whitehead R.N.
        • Overton T.W.
        • Kemp C.L.
        • Webber M.A.
        Exposure of Salmonella enterica serovar Typhimurium to high level biocide challenge can select multidrug resistant mutants in a single step.
        PLoS One. 2011; 6e22833
        • Li L.
        • He Z.-Y.
        • Wei X.-W.
        • Gao G.-P.
        • Wei Y.-Q.
        Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors.
        Hum Gene Ther. 2015; 26: 452-462
        • Fernández-Cuenca F.
        • Tomás M.
        • Caballero-Moyano F.-J.
        • Bou G.
        • Martínez-Martínez L.
        • Vila J.
        • et al.
        Reduced susceptibility to biocides in Acinetobacter baumannii: association with resistance to antimicrobials, epidemiological behaviour, biological cost and effect on the expression of genes encoding porins and efflux pumps.
        J Antimicrob Chemother. 2015; 70: 3222-3229
        • Goudarzi M.
        • Navidinia M.
        Overview perspective of bacterial strategies of resistance to biocides and antibiotics.
        Arch Clin Infect Dis. 2019; 14e65744
        • Hua Y.
        • Luo T.
        • Yang Y.
        • Dong D.
        • Wang R.
        • Wang Y.
        • et al.
        Phage therapy as a promising new treatment for lung infection caused by carbapenem-resistant Acinetobacter baumannii in mice.
        Front Microbiol. 2018; 8: 2659
        • de Miguel T.
        • Rama J.L.R.
        • Sieiro C.
        • Sánchez S.
        • Villa T.G.
        Bacteriophages and lysins as possible alternatives to treat antibiotic-resistant urinary tract infections.
        Antibiotics. 2020; 9: 466
        • Lai W.C.B.
        • Chen X.
        • Ho M.K.Y.
        • Xia J.
        • Leung S.S.Y.
        Bacteriophage-derived endolysins to target gram-negative bacteria.
        Int J Pharmaceut. 2020; 589: 119833
        • Łusiak-Szelachowska M.
        • Weber-Dąbrowska B.
        • Górski A.
        Bacteriophages and lysins in biofilm control.
        Virol Sin. 2020; 35: 125-133
        • Lin N.-T.
        • Chiou P.-Y.
        • Chang K.-C.
        • Chen L.-K.
        • Lai M.-J.
        Isolation and characterization of ϕAB2: a novel bacteriophage of Acinetobacter baumannii.
        Res Microbiol. 2010; 161: 308-314
        • Schmelcher M.
        • Loessner M.J.
        Bacteriophage endolysins: applications for food safety.
        Curr Opin Biotechnol. 2016; 37: 76-87
        • Nielsen T.B.
        • Yan J.
        • Slarve M.
        • Lu P.
        • Li R.
        • Ruiz J.
        • et al.
        Monoclonal antibody therapy against Acinetobacter baumannii.
        Infect Immun. 2021; 89https://doi.org/10.1128/IAI.00162-21
        • García-Quintanilla M.
        • Pulido M.R.
        • López-Rojas R.
        • Pachón J.
        • McConnell M.J.
        Emerging therapies for multidrug resistant Acinetobacter baumannii.
        Trends Microbiol. 2013; 21: 157-163
        • Neshani A.
        • Sedighian H.
        • Mirhosseini S.A.
        • Ghazvini K.
        • Zare H.
        • Jahangiri A.
        Antimicrobial peptides as a promising treatment option against Acinetobacter baumannii infections.
        Microb Pathogen. 2020; 146: 104238
        • Rishi P.
        • Vashist T.
        • Sharma A.
        • Kaur A.
        • Kaur A.
        • Kaur N.
        • et al.
        Efficacy of designer K11 antimicrobial peptide (a hybrid of melittin, cecropin A1 and magainin 2) against Acinetobacter baumannii-infected wounds.
        Pathog Dis. 2018; 76: fty072
        • Mohamed M.F.
        • Brezden A.
        • Mohammad H.
        • Chmielewski J.
        • Seleem M.N.
        A short D-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii.
        Sci Rep. 2017; 7: 1-13
        • Czaplewski L.
        • Bax R.
        • Clokie M.
        • Dawson M.
        • Fairhead H.
        • Fischetti V.A.
        • et al.
        Alternatives to antibiotics – a pipeline portfolio review.
        Lancet Infect Dis. 2016; 16: 239-251
        • Luo G.
        • Spellberg B.
        • Gebremariam T.
        • Lee H.
        • Xiong Y.
        • French S.
        • et al.
        Combination therapy with iron chelation and vancomycin in treating murine staphylococcemia.
        Eur J Clin Microbiol Infect Dis. 2014; 33: 845-851
        • Ahmad I.
        • Nygren E.
        • Khalid F.
        • Myint S.L.
        • Uhlin B.E.
        A cyclic-di-GMP signalling network regulates biofilm formation and surface associated motility of Acinetobacter baumannii 17978.
        Sci Rep. 2020; 10: 1-11
        • Krasauskas R.
        • Skerniškytė J.
        • Armalytė J.
        • Sužiedėlienė E.
        The role of Acinetobacter baumannii response regulator BfmR in pellicle formation and competitiveness via contact-dependent inhibition system.
        BMC Microbiol. 2019; 19: 1-12
        • Chen R.
        • Lv R.
        • Xiao L.
        • Wang M.
        • Du Z.
        • Tan Y.
        • et al.
        A1S_2811, a CheA/Y-like hybrid two-component regulator from Acinetobacter baumannii ATCC 17978, is involved in surface motility and biofilm formation in this bacterium.
        MicrobiologyOpen. 2017; 6e00510
        • Rumbo-Feal S.
        • Pérez A.
        • Ramelot T.A.
        • Álvarez-Fraga L.
        • Vallejo J.A.
        • Beceiro A.
        • et al.
        Contribution of the A. baumannii A1S_0114 gene to the interaction with eukaryotic cells and virulence.
        Front Cell Infect Microbiol. 2017; 7: 108
        • Pérez-Varela M.
        • Tierney A.R.
        • Kim J.-S.
        • Vázquez-Torres A.
        • Rather P.
        Characterization of RelA in Acinetobacter baumannii.
        J Bacteriol. 2020; 202 (:e00045-20)
        • Luo L-M
        • Wu L-J
        • Xiao Y-L
        • Zhao D.
        • Chen Z-X
        • Kang M.
        • et al.
        Enhancing pili assembly and biofilm formation in Acinetobacter baumannii ATCC19606 using non-native acyl-homoserine lactones.
        BMC Microbiol. 2015; 15: 1-7
        • Modarresi F.
        • Azizi O.
        • Shakibaie M.R.
        • Motamedifar M.
        • Mosadegh E.
        • Mansouri S.
        Iron limitation enhances acyl homoserine lactone (AHL) production and biofilm formation in clinical isolates of Acinetobacter baumannii.
        Virulence. 2015; 6: 152-161
        • Kentache T.
        • Abdelkrim A.B.
        • Jouenne T.
        • Dé E.
        • Hardouin J.
        Global dynamic proteome study of a pellicle-forming Acinetobacter baumannii strain.
        Mol Cell Proteom. 2017; 16: 100-112
        • Marti S.
        • Chabane Y.N.
        • Alexandre S.
        • Coquet L.
        • Vila J.
        • Jouenne T.
        • et al.
        Growth of Acinetobacter baumannii in pellicle enhanced the expression of potential virulence factors.
        PLoS One. 2011; 6e26030
        • He X.
        • Lu F.
        • Yuan F.
        • Jiang D.
        • Zhao P.
        • Zhu J.
        • et al.
        Biofilm formation caused by clinical Acinetobacter baumannii isolates is associated with overexpression of the AdeFGH efflux pump.
        Antimicrob Agents Chemother. 2015; 59: 4817-4825
        • Richmond G.E.
        • Evans L.P.
        • Anderson M.J.
        • Wand M.E.
        • Bonney L.C.
        • Ivens A.
        • et al.
        The Acinetobacter baumannii two-component system AdeRS regulates genes required for multidrug efflux, biofilm formation, and virulence in a strain-specific manner.
        MBio. 2016; 7 (:e00430-16)
        • Jung H.-W.
        • Kim K.
        • Islam M.M.
        • Lee J.C.
        • Shin M.
        Role of ppGpp-regulated efflux genes in Acinetobacter baumannii.
        J Antimicrob Chemother. 2020; 75: 1130-1134