Dissemination of antibiotic resistance and other healthcare waterborne pathogens. The price of poor design, construction, usage and maintenance of modern water/sanitation services

  • M.J. Weinbren
    Correspondence
    Address: Microbiology Department, King's Mill Hospital, Mansfield Road, Sutton-in-Ashfield, Nottinghamshire NG17 4JL, UK.
    Affiliations
    King's Mill Hospital NHS Foundation Trust, Sutton-in-Ashfield, Nottinghamshire, UK
    Search for articles by this author
Published:March 31, 2020DOI:https://doi.org/10.1016/j.jhin.2020.03.034

      Summary

      Classical waterborne pathogens (cholera/typhoid) drove the development of safe water and sanitation during the industrial revolution. Whilst effective against these organisms, other bacteria exploited the potential to form biofilm in the narrow pipes of buildings. Legionella was discovered in 1976. Despite evidence dating back to 1967 (including paediatric deaths in Manchester in 1995 from splashes from a sink contaminating parenteral nutrition) it required the deaths of four neonates and the might of the news media in 2011 for the UK medical services to accept waterborne transmission of other opportunistic plumbing premise pathogens (OPPPs). Human nature, a healthcare construction industry largely devoid of interest in water safety, and failures in recognizing transmission are major forces hindering progress in preventing infection/deaths from waterborne infections. The advent of highly resistant Gram-negative bacteria is highlighting further deficiencies in modern drainage systems. These bacteria are not thought to have special adaptations promoting their dispersal but purely attract our attention to the well-trodden routes used by susceptible organisms, which go undetected. The O'Neill report warns of the bleak future without effective antibiotics. This review examines the evidence as to why modern water services/sanitation continue to present a risk to patient safety (and the general public) and suggests that their designs may be flawed if they are to stem the modern equivalent of cholera, the dissemination of antibiotic resistance.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Journal of Hospital Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Langschmidt J.
        • Caine P.
        • Wearn C.
        • Bamford A.
        • Wilson Y.T.
        • Moiemen N.S.
        Hydrotherapy in burn care: a survey of hydrotherapy practices in the UK and Ireland and literature review.
        Burns. 2014; 40: 860-864
        • Nygard K.
        • Werner-Johansen O.
        • Ronsen S.
        • Caugant D.A.
        • Simonsen Ø.
        • Kanestrøm A.
        • et al.
        An outbreak of Legionnaires’ disease caused by long distance spread from an industrial air scrubber in Sarpsborg, Norway.
        Clin Infect Dis. 2008; 46: 61-69
        • Fine P.
        • Victora C.
        • Deaton A.
        John Snow’s legacy: epidemiology without borders.
        Lancet. 2013; 381: 1302-1311
        • Kohn J.
        Pseudomonas infection in hospital.
        BMJ. 1967; 4: 548
        • Kohn J.A.
        Waste-trap sterilising method.
        Lancet. 1970; 2: 550e1
        • Anaissie E.
        • Penzak S.
        • Dignani C.
        The hospital water supply as a source of nosocomial infections. A plea for action.
        Arch Intern Med. 2002; 162: 1483-1492
        • Wise J.
        Three babies die in pseudomonas outbreak at Belfast neonatal unit.
        BMJ. 2012; 344: e592
        • Scriven J.
        • Scobie A.
        • Verlander N.
        • Houston A.
        • Collyns T.
        • Cajic V.
        • et al.
        Mycobacterium chimaera infection following cardiac surgery in the United Kingdom: clinical features and outcome of the first 30 cases.
        Clin Microbiol Infect. 2018; 24: 1164-1170
        • Falkinham J.
        • Hilborn E.
        • Arduino M.
        • Pruden A.
        • Edwards M.
        Epidemiology and ecology of opportunistic premise plumbing pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa.
        Environ Health Perspect. 2015; 123: 749-758
        • Falkinham J.
        • Pruden A.
        • Edwards M.
        Opportunistic premise plumbing pathogens: increasingly important pathogens in drinking water.
        Pathogens. 2015; 4: 373-386
        • Health Technical Memorandum 04-01
        Safe water in healthcare premises Part C: Pseudomonas aeruginosa – advice for augmented care units.
        (Available at:) ([last accessed March 2020])
        • Health Protection Scotland
        Summary of incident and findings of the NHS Greater Glasgow and Clyde: Queen Elizabeth University Hospital/Royal Hospital for Children water contamination incident and recommendations for NHS Scotland 2018.
        (Available at:) ([last accessed March 2020])
        • Garvey M.
        • Bradley C.
        • Holden E.
        • Weinbren M.
        Where to do water testing for Pseudomonas aeruginosa in a healthcare setting.
        J Hosp Infect. 2017; 97: 192-195
        • Montgomery R.
        • Boswell T.
        • Mahida N.
        Pseudomonas aeruginosa control in healthcare settings: outpatient dialysis units are not augmented care units.
        J Hosp Infect. 2017; 98: 32-33
        • Breathnach A.
        • Cubbon M.
        • Karunaharan R.
        • Pope C.
        • Planche T.
        Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: association with contaminated hospital waste-water systems.
        J Hosp Infect. 2012; 82: 19-24
        • Ulrich R.
        • Quan X.
        • Zimring C.
        • Joseph A.
        • Choudhary R.
        The role of the physical environment in the hospital of the 21st century: a once-in-a-lifetime opportunity. Report to the center for health design for the designing the 21st century hospital project.
        2004 (Available at: www.healthdesign.org › system › files › Ulrich_Role of Physical_2004 [last accessed March 2020])
        • Tissot F.
        • Blanc D.
        • Basset P.
        • Zanetti G.
        New genotyping method discovers sustained nosocomial Pseudomonas aeruginosa outbreak in an intensive care burn unit.
        J Hosp Infect. 2016; 94: 2-7
        • Hopman J.
        • Tostmann A.
        • Wertheim H.
        • Bos M.
        • Kolwijck E.
        • Akkermans R.
        • et al.
        Reduced rate of intensive care unit acquired Gram-negative bacilli after removal of sinks and introduction of ‘water-free’ patient care.
        Antimicrob Resist Infect Control. 2017; 6: 59
        • Shaw E.
        • Gavalda L.
        • Camara J.
        • Gasull R.
        • GallegoS
        • Tubau F.
        • et al.
        Control of endemic multidrug-resistant Gram negative bacteria after removal of sinks and implementing a new water-safe policy in an intensive care unit.
        J Hosp Infect. 2018; 98: 275-281
        • Kizny Gordon A.
        • Mathers A.
        • Cheong E.
        • Gottlieb T.
        • Kotay S.
        • Walker A.S.
        • et al.
        The hospital water environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections – a systematic review of the literature.
        Clin Infect Dis. 2017; 64: 1435-1444
        • Day M.
        • Hopkins K.
        • Wareham D.
        • Toleman M.
        • Kotay S.
        • Walker A.S.
        • et al.
        Extended spectrum β-lactamase producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: an epidemiological surveillance and typing study.
        Lancet Infect Dis. 2019; 19: 1325-1335
        • Roux D.
        • Aubier B.
        • Cochard H.
        • Quentin R.
        • van der Mee-Marquet N.
        Contaminated sinks in intensive care units: an underestimated source of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the patient environment.
        J Hosp Infect. 2013; 85: 106-111
        • Lowe C.
        • Willey B.
        • O’Shaughnessy A.
        • Lee W.
        • Lum M.
        • Pike K.
        • et al.
        Outbreak of extended-spectrum β-lactamase-producing Klebsiella oxytoca infections associated with contaminated handwashing sinks.
        Emerg Infect Dis. 2012; 18: 1242e7
        • Hendrik T.
        • Voorintholt A.
        • Vos M.
        Clinical and molecular epidemiology of extended spectrum beta-lactamase producing Klebsiella spp: a systematic review and meta analyses.
        PloS One. 2015; 10e0140754
        • Hota S.
        • Hirji Z.
        • Stockton K.
        • Lemieux C.
        • Dedier H.
        • Wolfaardt G.
        • et al.
        Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design.
        Infect Control Hosp Epidemiol. 2009; 30: 25e33
        • Kotay S.
        • Chai W.
        • Guilford W.
        • Barry K.
        • Mathers A.J.
        Spread from the sink to the patient: in situ study using green fluorescent protein (GFP)-expressing Escherichia coli to model bacterial dispersion from hand-washing sink-trap reservoirs.
        Appl Environ Microbiol. 2017; 83: e03327-e04016
        • Aranega-Bou P.
        • George R.
        • Verlander N.
        • Paton S.
        • Bennet A.
        • Moore G.
        Carbapenem-resistant Enterobacteriaceae dispersal from sinks is linked to drain position and drainage rates in a laboratory model system.
        J Hosp Infect. 2019; 102: 63-69
        • Decraene V.
        • Phan H.
        • George R.
        • Wyllie D.
        • Akinremi O.
        • Aiken Z.
        • et al.
        A large, refractory nosocomial outbreak of Klebsiella pneumoniae carbapenemase-producing Escherichia coli demonstrates carbapenemase gene outbreaks involving sink sites require novel approaches to infection control.
        Antimicrob Agents Chemother. 2018; 62: e01689-e01718
        • Smismans A.
        • Ho E.
        • Daniels D.
        • Ombelet S.
        • Mellaerts B.
        • Obbels D.
        • et al.
        New environmental reservoir of CPE in hospitals.
        Lancet Infect Dis. 2019; 19: 580
        • Fernando S.
        • Phan T.
        • Parker C.
        • Cai T.
        • Gottlieb T.
        Increased detection of carbapenemase-producing Enterobacteriaceae on post-clean sampling of a burns unit’s wet surfaces.
        J Hosp Infect. 2019; 101: 179-182
        • Hopman J.
        • Meijer C.
        • Kenters N.
        • Coolen J.
        • Ghamati M.R.
        • Mehtar S.
        • et al.
        Risk assessment after a severe hospital-acquired infection associated with carbapenemase-producing Pseudomonas aeruginosa.
        JAMA Network Open. 2019; 2e187665
        • Mathers A.
        • Vegesana K.
        • Mesner I.
        • Barry K.
        • Pannone A.
        • Baumann J.
        • et al.
        Intensive care wastewater interventions to prevent transmission of multispecies Klebsiella pneumoniae carbapenemase-producing organisms.
        Clin Infect Dis. 2018; 67: 171-178
        • Kossow A.
        • Kampmeier S.
        • Willelms S.
        • Berdel W.
        • Groll A.H.
        • Burkhardt B.
        • et al.
        Control of multidrug resistant Pseudomonas aeruginosa in allogeneic hematopoietic stem cell transplant recipients by a novel bundle including remodelling of sanitary and water supply systems.
        Clin Infect Dis. 2017; 65: 935-942
        • Voigta A.
        • Faerber H.
        • Wilbring G.
        • Skutlarek D.
        • Felder C.
        • Mahn R.
        • et al.
        The occurrence of antimicrobial substances in toilet, sink and shower drainpipes of clinical units: a neglected source of antibiotic residues.
        Int J Hyg Environ Health. 2019; 222: 455-467
        • Turner C.
        • Mosby D.
        • Partridge D.
        • Mason C.
        • Parsons H.
        A patient sink tap facilitating carbapenemase-producing enterobacterales transmission.
        J Hosp Infect. 2020; 104: 512-513
        • Weinbren M.
        • Bree L.
        • Sleigh S.
        • Griffiths M.
        Giving the tap the elbow? An observational study.
        J Hosp Infect. 2017; 96: 328-330
        • Weinbren M.
        • Scott D.
        • Bower W.
        • Milanova D.
        Observation study of water outlet design from a cross infection/user perspective: time for a radical re-think?.
        J Hosp Infect. 2019; 103: e68-e72
        • Health and Safety Executive
        Legionnaires’ disease. The control of legionella bacteria in water systems. Approved Code of Practice and guidance.
        HSE, London2013 (Available at:) ([last accessed March 2020])
        • Grabowski M.
        • Lobo J.
        • Gunnell B.
        • Enfield K.
        • Carpenter R.
        • Barnes L.
        • et al.
        Characterizations of handwashing sink activities in a single hospital medical intensive care unit.
        J Hosp Infect. 2018; 100: e115-e122
        • Review on Antimicrobial Resistance (chaired by O’Neill J.)
        Tackling drug-resistant infections globally: final report and recommendations.
        (Available at:) ([last accessed March 2020])
      1. Review on Antimicrobial Resistance (chaired by O’Neill J). Infection prevention, control and surveillance: limiting the development and spread of drug resistance. March 2016 (Available at:) ([last accessed March 2020])