Advertisement

Imaging in the investigation and management of Staphylococcus aureus bacteraemia: a role for advanced imaging techniques

  • A.L. Goodman
    Correspondence
    Corresponding author. Address: MRC Clinical Trials Unit, University College London, 90 High Holborn, London WC1V 6LJ, UK. Tel.: +44 (0)2076 704770.
    Affiliations
    MRC Clinical Trials Unit, London, UK

    Centre for Clinical Infection and Diagnostics Research, King's College London, Guy's and St Thomas' NHS Foundation Trust, London, UK
    Search for articles by this author
  • G.J. Cook
    Affiliations
    Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK

    The King's College London, Guys & St Thomas' PET Centre, London, UK
    Search for articles by this author
  • V. Goh
    Affiliations
    Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK

    Radiology, Guy’s & St Thomas’ Hospitals NHS Foundation Trust, London, UK
    Search for articles by this author
Published:January 14, 2020DOI:https://doi.org/10.1016/j.jhin.2020.01.007

      SUMMARY

      Staphylococcus aureus bacteraemia (SAB) continues to affect ∼25,000 patients in the UK per year with a high crude mortality of 30% at 90 days. Prompt source control improves outcomes in sepsis and SAB and is included in sepsis guidelines. A recent clinical trial of adjunctive antibiotic treatment in SAB found that the majority of recurrences of SAB were associated with a failure of source management. In this condition, the ability to control the source of infection may be limited by the ability to detect a focus of infection. Echocardiogram is now a routinely used tool to detect such unknown foci in the form of unexpected infectious vegetations. We review the literature to explore the utility of advanced imaging techniques, such as [18F]fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and magnetic resonance imaging (including whole-body MRI), to detect foci which may otherwise be missed. As unknown foci are associated with increased mortality, we propose that increasing the detection of foci could enable improved source control and result in improved outcomes in SAB.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hospital Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nambiar K.
        • Seifert H.
        • Rieg S.
        • Kern W.V.
        • Scarborough M.
        • Gordon N.C.
        • et al.
        Survival following Staphylococcus aureus bloodstream infection: a prospective multinational cohort study assessing the impact of place of care.
        J Infect. 2018; 77: 516-525
        • Van Hal S.J.
        • Jensen S.O.
        • Vaska V.L.
        • Espedido B.A.
        • Paterson D.L.
        • Gosbell I.B.
        Predictors of mortality in Staphylococcus aureus bacteremia.
        Clin Microbiol Rev. 2012; 25: 362-386
        • Thwaites G.E.
        • Scarborough M.
        • Szubert A.
        • Nsutebu E.
        • Tilley R.
        • Greig J.
        • et al.
        Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): a multicentre, randomised, double-blind, placebo-controlled trial.
        Lancet. 2018; 391: 668-678
        • Thwaites G.E.
        • Edgeworth J.D.
        • Gkrania-Klotsas E.
        • Kirby A.
        • Tilley R.
        • Török M.E.
        • et al.
        Clinical management of Staphylococcus aureus bacteraemia.
        Lancet Infect Dis. 2011; 11: 208-222
      1. NHS England diagnostic imaging dataset annual statistical release 2017/18.
        (Available at:) ([last accessed 17 December 2019])
        • Pasoglou V.
        • Michoux N.
        • Larbi A.
        • Van Nieuwenhove S.
        • Lecouvet F.
        Whole body MRI and oncology: recent major advances.
        Br J Radiol. 2018; 91: 20170664
        • Brøndserud M.B.
        • Pedersen C.
        • Rosenvinge F.S.
        • Høilund-Carlsen P.F.
        • Hess S.
        Clinical value of FDG-PET/CT in bacteremia of unknown origin with catalase-negative Gram-positive cocci or Staphylococcus aureus.
        Eur J Nucl Med Mol Imaging. 2019; 46: 1351-1358
        • Khattak S.G.
        • Dady I.
        • Mukherjee D.
        Unusual presentation of late-onset disseminated staphylococcal sepsis in a preterm infant.
        BMJ Case Rep. 2019; 12e226325
        • Miles A.
        • Taylor S.A.
        • Evans R.E.C.
        • Halligan S.
        • Beare S.
        • Bridgewater J.
        • et al.
        Patient preferences for whole-body MRI or conventional staging pathways in lung and colorectal cancer: a discrete choice experiment.
        Eur Radiol. 2019; 29: 3889-3900
        • Andronikou S.
        • Mendes da Costa T.
        • Hussien M.
        • Ramanan A.V.
        Radiological diagnosis of chronic recurrent multifocal osteomyelitis using whole-body MRI-based lesion distribution patterns.
        Clin Radiol. 2019; 74: 737
        • Gariani J.
        • Westerland O.
        • Natas S.
        • Verma H.
        • Cook G.
        • Goh V.
        Comparison of whole body magnetic resonance imaging (WBMRI) to whole body computed tomography (WBCT) or 18F-fluorodeoxyglucose positron emission tomography/CT (18F-FDG PET/CT) in patients with myeloma: systematic review of diagnostic performance.
        Crit Rev Oncol Hematol. 2018; 124: 66-72
        • Kaasch A.J.
        • Barlow G.
        • Edgeworth J.D.
        • Fowler Jr., V.G.
        • Hellmich M.
        • Hopkins S.
        • et al.
        Staphylococcus aureus bloodstream infection: a pooled analysis of five prospective, observational studies.
        J Infect. 2014; 68: 242-251
        • Gould F.K.
        • Denning D.W.
        • Elliott T.S.
        • Foweraker J.
        • Perry J.D.
        • Prendergast B.D.
        • et al.
        Guidelines for the diagnosis and antibiotic treatment of endocarditis in adults: a report of the Working Party of the British Society for Antimicrobial Chemotherapy.
        J Antimicrob Chemother. 2012; 67: 269-289
        • Liu C.
        • Bayer A.
        • Cosgrove S.E.
        • Daum R.S.
        • Fridkin S.K.
        • Gorwitz R.J.
        • et al.
        Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children.
        Clin Infect Dis. 2011; 52: e18-e55
        • Baddour L.M.
        • Wilson W.R.
        • Bayer A.S.
        • Fowler Jr., V.G.
        • Tleyjeh I.M.
        • Rybak M.J.
        • et al.
        Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association.
        Circulation. 2015; 132: 1435-1486
        • Habib G.
        • Lancellotti P.
        • Antunes M.J.
        • Bongiorni M.G.
        • Casalta J.P.
        • Del Zotti F.
        • et al.
        2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC).
        Eur Heart J. 2015; 36: 3075-3128
        • Fowler Jr., V.G.
        • Li J.
        • Corey G.R.
        • Boley J.
        • Marr K.A.
        • Gopal A.K.
        • et al.
        Role of echocardiography in evaluation of patients with Staphylococcus aureus bacteremia: experience in 103 patients.
        J Am Coll Cardiol. 1997; 30: 1072-1078
        • Rasmussen R.V.
        • Høst U.
        • Arpi M.
        • Hassager C.
        • Johansen H.K.
        • Korup E.
        • et al.
        Prevalence of infective endocarditis in patients with Staphylococcus aureus bacteraemia: the value of screening with echocardiography.
        Eur J Echocardiogr. 2011; 12: 414-420
        • Holland T.L.
        • Arnold C.
        • Fowler Jr., V.G.
        Clinical management of Staphylococcus aureus bacteremia: a review.
        JAMA. 2014; 312: 1330-1341
        • Ring J.
        • Hoerr V.
        • Tuchscherr L.
        • Kuhlmann M.T.
        • Löffler B.
        • Faber C.
        • et al.
        MRI visualization of Staphyloccocus aureus-induced infective endocarditis in mice.
        PLoS One. 2014; 9e107179
        • Mathew R.C.
        • Löffler A.I.
        • Salerno M.
        Role of cardiac magnetic resonance imaging in valvular heart disease: diagnosis, assessment, and management.
        Curr Cardiol Rep. 2018; 20: 119
        • Dursun M.
        • Yılmaz S.
        • Yılmaz E.
        • Yılmaz R.
        • Onur İ.
        • Oflaz H.
        • et al.
        The utility of cardiac MRI in diagnosis of infective endocarditis: preliminary results.
        Diagn Interv Radiol. 2015; 21: 28-33
        • Iung B.
        • Tubiana S.
        • Klein I.
        • Messika-Zeitoun D.
        • Brochet E.
        • Lepage L.
        • et al.
        Determinants of cerebral lesions in endocarditis on systematic cerebral magnetic resonance imaging: a prospective study.
        Stroke. 2013; 44: 3056-3062
        • Mahmood M.
        • Kendi A.T.
        • Ajmal S.
        • Farid S.
        • O’Horo J.C.
        • Chareonthaitawee P.
        • et al.
        Meta-analysis of 18F-FDG PET/CT in the diagnosis of infective endocarditis.
        J Nucl Cardiol. 2019; 26: 922-935
        • de Camargo R.A.
        • Bitencourt M.S.
        • Meneghetti J.C.
        • Soares J.
        • Gonçalves L.F.T.
        • Buchpiguel C.A.
        • et al.
        The role of 18F-FDG-PET/CT in the diagnosis of left-sided endocarditis: native vs. prosthetic valves endocarditis.
        Clin Infect Dis. 2019 Apr 5; (pii: ciz267 [Epub ahead of print])
      2. Staphylococcus aureus bacteraemia (SAB) management clinical guideline version No.: 1.2 2019.
        (Government of South Australia Policy No. CG167. Available at:) ([last accessed December 2019])
        • Healthcare Improvement Scotland
        Guidance on management of proven or suspected Staphylococcus aureus bacteraemia in adults.
        2019 (Available at:) ([last accessed December 2019])
        • Wiese L.
        • Mejer N.
        • Schønheyder H.C.
        • Westh H.
        • Jensen A.G.
        • Larsen A.R.
        • et al.
        A nationwide study of comorbidity and risk of reinfection after Staphylococcus aureus bacteraemia.
        J Infect. 2013; 67: 199-205
        • Abdelrahman A.E.
        • Siam H.
        • Allouch H.
        • Boehm H.
        Multi-level non-contiguous spinal infections. Series of 77 cases in a single institution. 8th Annual Meeting of the German Spine Society, Frankfurt, Germany.
        Eur Spine J. 2013; 22: 2582-2669
        • Spaeth H.J.
        • Chandnani V.P.
        • Beltran J.
        • Lucas J.G.
        • Ortiz I.
        • King M.A.
        • et al.
        Magnetic resonance imaging detection of early experimental periostitis. Comparison of magnetic resonance imaging, computed tomography, and plain radiography with histopathologic correlation.
        Invest Radiol. 1991; 26: 304-308
        • Kouijzer I.J.E.
        • Scheper H.
        • de Rooy J.W.J.
        • Bloem J.L.
        • Janssen M.J.R.
        • van den Hoven L.
        • et al.
        The diagnostic value of 18F-FDG-PET/CT and MRI in suspected vertebral osteomyelitis – a prospective study.
        Eur J Nucl Med Mol Imaging. 2018; 45: 798-805
        • Fuster D.
        • Tomás X.
        • Mayoral M.
        • Soriano A.
        • Manchón F.
        • Cardenal C.
        • et al.
        Prospective comparison of whole-body (18)F-FDG PET/CT and MRI of the spine in the diagnosis of haematogenous spondylodiscitis.
        Eur J Nucl Med Mol Imaging. 2015; 42: 264-271
        • Schwegler B.
        • Stumpe K.D.
        • Weishaupt D.
        • Strobel K.
        • Spinas G.A.
        • von Schulthess G.K.
        • et al.
        Unsuspected osteomyelitis is frequent in persistent diabetic foot ulcer and better diagnosed by MRI than by 18F-FDG PET or 99mTc-MOAB.
        J Intern Med. 2008; 263: 99-106
        • Jensen A.G.
        • Espersen F.
        • Skinhøj P.
        • Frimodt-Møller N.
        Bacteremic Staphylococcus aureus spondylitis.
        Arch Intern Med. 1998; 158: 509-517
        • Thwaites G.E.
        • Scarborough M.
        • Szubert A.
        • Saramago Goncalves P.
        • Soares M.
        • Bostock J.
        • et al.
        Adjunctive rifampicin to reduce early mortality from Staphylococcus aureus bacteraemia: the ARREST RCT.
        Health Technol Assess. 2018; 22: 1-148
        • Malhotra R.
        • Chan C.S.
        • Nather A.
        Osteomyelitis in the diabetic foot.
        Diabet Foot Ankle. 2014; 30: 5
        • Lyons O.T.
        • Baguneid M.
        • Barwick T.D.
        • Bell R.E.
        • Foster N.
        • Homer-Vanniasinkam S.
        • et al.
        Diagnosis of aortic graft infection: a case definition by the Management of Aortic Graft Infection Collaboration (MAGIC).
        Eur J Vasc Endovasc Surg. 2016; 52: 758-763
        • Fukuchi K.
        • Ishida Y.
        • Higashi M.
        • Tsunekawa T.
        • Ogino H.
        • Minatoya K.
        • et al.
        Detection of aortic graft infection by fluorodeoxyglucose positron emission tomography: comparison with computed tomographic findings.
        J Vasc Surg. 2005; 42: 919-925
        • Vos F.J.
        • Bleeker-Rovers C.P.
        • Sturm P.D.
        • Krabbe P.F.
        • van Dijk A.P.
        • Cuijpers M.L.
        • et al.
        18F-FDG PET/CT for detection of metastatic infection in Gram-positive bacteremia.
        J Nucl Med. 2010; 51: 1234-1240
        • Berrevoets M.A.H.
        • Kouijzer I.J.E.
        • Aarntzen E.H.J.G.
        • Janssen M.J.R.
        • De Geus-Oei L.F.
        • Wertheim H.F.L.
        • et al.
        18F-FDG PET/CT optimizes treatment in Staphylococcus aureus bacteremia and is associated with reduced mortality.
        J Nucl Med. 2017; 58: 1504-1510
        • Berrevoets M.A.H.
        • Kouijzer I.J.E.
        • Slieker K.
        • Aarntzen E.H.J.G.
        • Kullberg B.J.
        • Oever J.T.
        • et al.
        18F-FDG PET/CT-guided treatment duration in patients with high-risk Staphylococcus aureus bacteremia: a proof of principle.
        J Nucl Med. 2019; 60: 998-1002
        • Yildiz H.
        • Reychler G.
        • Rodriguez-Villalobos H.
        • Orioli L.
        • D’Abadie P.
        • Vandeleene B.
        • et al.
        Mortality in patients with high risk Staphylococcus aureus bacteremia undergoing or not PET-CT: a single center experience.
        J Infect Chemother. 2019; 25: 880-885
      3. NHS reference costs 2017 to 2018 national schedule of reference costs.
        (Available at:) ([last accessed July 2019])
      4. Rambam Health Care Campus. The benefit of FDG PET CT in the treatment algorithm of Staphylococcus aureus bacteremia (PETCT4SAB) trials identifier NCT02476487.
        (Available at:) ([last accessed December 2019])
      5. University Hospital, Montpellier. Impact of 18 FDG PET/CT on the management of patients with Staphylococcus aureus bloodstream infection (TEPSTAR).
        (Available at:) ([last accessed December 2019])