Advertisement

Faecal microbiota transplantation for the decolonization of antibiotic-resistant bacteria in the gut: a systematic review and meta-analysis

Published:March 26, 2019DOI:https://doi.org/10.1016/j.jhin.2019.03.010

      Summary

      Antibiotic resistance is a growing global problem associated with increased morbidity and mortality, and presents a significant financial and economic burden on healthcare. Faecal microbiota transplantation (FMT) has been proven effective for curing recurrent Clostridium difficile infections, however no systematic review to date has addressed its effectiveness for decolonization of antibiotic-resistant bacteria from the gut. The aim of this study was to establish whether faecal microbiota transplantation decolonizes antibiotic-resistant bacteria from the gut of colonized adults. A systematic review was performed by undertaking a comprehensive search on MEDLINE, Embase, CENTRAL, PubMed and CINAHL databases for evidence up until May 2018. Randomized and non-randomized studies evaluating the effects of FMT on gut colonization of antibiotic-resistant bacteria in adults were eligible. Studies were assessed using the Joanna Briggs Institution critical appraisal checklists. Quality of reporting was assessed using PROCESS and CARE checklists. Data was synthesized narratively, along with a meta-analysis of proportions for the primary outcome.
      Five studies with a total number of 52 participants were included. Evidence of low quality showed that decolonization was achieved in half of the cases one month after FMT with higher response noted in Pseudomonas aeruginosa, and lower response in Klebsiella pneumoniae with New Delhi metallo-beta-lactamase 1 (NDM-1) and extended-spectrum β-lactamase (ESBL) mechanisms of resistance. In successful cases, 70% of decolonization cases occurred within the first week after FMT. Few temporary adverse events were identified.
      Despite the limitations of the included studies, evidence from this review indicates a potential benefit of FMT as a decolonization intervention, which can only be confirmed by future well-designed RCTs.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hospital Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Blair J.M.A.
        A climate for antibiotic resistance.
        Nat Clim Change. 2018; 8: 460-461
        • WHO. Antimicrobial
        Resistance: global report on surveillence.
        2014 (Available at:) ([last accessed May 2018])
        • Buffie C.G.
        • Pamer E.G.
        Microbiota-mediated colonization resistance against intestinal pathogens.
        Nat Rev Immunol. 2013; 13: 790
        • Becattini S.
        • Taur Y.
        • Pamer E.G.
        Antibiotic-induced changes in the intestinal microbiota and disease.
        Trends Mol Med. 2016; 22: 458-478
        • WHO
        Global action plan on antimicrobial resistance.
        2015 (Available at:) ([last accessed May 2018])
        • O'Neill J.
        Infection prevention, control and surveillance: limiting the development and spread of drug-resistance.
        2016 (Available at:) ([last accessed July 2018])
        • O'Neill J.
        Tackling drug-resistant infections globally: Final report and recommendations.
        2016 (Available at:) ([last accessed May 2018])
        • PHE. Health
        matters: antimicrobial resistance.
        2015 (Available at:) ([last accessed May 2018])
        • Arzanlou M.
        • Chai Wern C.
        • Venter H.
        Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria.
        Essays Biochem. 2017; 61: 49
        • UK D.H.
        5 Year antimicrobial resistance strategy 2013 to 2018.
        (Available at:) ([last accessed June 2018])
        • Khanna S.
        Microbiota replacement therapies: innovation in gastrointestinal care.
        Clin Pharmacol Ther. 2018; 103: 102-111
        • Tortora G.J.
        • Funke B.R.
        • Case C.L.
        Microbiology: an introduction.
        11th ed. Pearson, Harlow2014
        • Munita J.M.
        • Arias C.A.
        Mechanisms of Antibiotic Resistance.
        Microbiol Spectr. 2016; 4 (Available at:)
        • Thursby E.
        • Juge N.
        Introduction to the human gut microbiota.
        Biochem J. 2017; 474: 1823-1836
        • Laffin M.
        • Millan B.
        • Madsen K.L.
        Fecal microbial transplantation as a therapeutic option in patients colonized with antibiotic resistant organisms.
        Gut Microbes. 2017; 8: 221-224
        • Brandt L.J.
        • Aroniadis O.C.
        An overview of fecal microbiota transplantation: techniques, indications, and outcomes.
        Gastrointest Endosc. 2013; 78: 240-249
        • Kelly C.R.
        • Kahn S.
        • Kashyap P.
        • Laine L.
        • Rubin D.
        • Atreja A.
        • et al.
        Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook.
        Gastroenterology. 2015; 149: 223-237
        • Kassam Z.
        • Lee C.H.
        • Yuan Y.
        • Hunt R.H.
        Fecal microbiota transplantation for clostridium difficile infection: systematic review and meta-analysis.
        Am J Gastroenterol. 2013; 108: 500
        • Quraishi M.N.
        • Widlak M.
        • Bhala N.
        • Moore D.
        • Price M.
        • Sharma N.
        • et al.
        Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection.
        Aliment Pharmacol Ther. 2017; 46: 479-493
        • van Nood E.
        • Vrieze A.
        • Nieuwdorp M.
        • Fuentes S.
        • Zoetendal E.G.
        • de Vos W.M.
        • et al.
        Duodenal infusion of donor feces for recurrent Clostridium difficile.
        N Engl J Med. 2013; 368: 407-415
        • Hamilton M.J.
        • Weingarden A.R.
        • Unno T.
        • Khoruts A.
        • Sadowsky M.J.
        High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria.
        Gut Microbes. 2013; 4: 125-135
        • Khoruts A.
        • Dicksved J.
        • Jansson J.K.
        • Sadowsky M.J.
        Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent clostridium difficile-associated diarrhea.
        J Clin Gastroenterol. 2010; 44: 354-360
        • Ubeda C.
        • Bucci V.
        • Caballero S.
        • Djukovic A.
        • Toussaint N.C.
        • Equinda M.
        • et al.
        Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization.
        Infect Immun. 2013; 81: 965-973
        • Gopalsamy S.N.
        • Woodworth M.H.
        • Wang T.
        • Carpentieri C.T.
        • Mehta N.
        • Friedman-Moraco R.J.
        • et al.
        The use of microbiome restoration therapeutics to eliminate intestinal colonization with multidrug-resistant organisms.
        Am J Med Sci. 2018; 356: 433-440
        • Manges A.R.
        • Steiner T.S.
        • Wright A.J.
        Fecal microbiota transplantation for the intestinal decolonization of extensively antimicrobial-resistant opportunistic pathogens: a review.
        Infect Dis. 2016; 48: 587-592
        • Wong W.F.
        • Santiago M.
        Microbial approaches for targeting antibiotic-resistant bacteria.
        Microb Biotechnol. 2017; 10: 1047-1053
        • Higgins J.P.T.
        • Green S.
        • Cochrane Collaboration
        Cochrane handbook for systematic reviews of interventions.
        Wiley-Blackwell, Chichester; Hoboken NJ2008
        • Reeves B.C.
        • Deeks J.J.
        • Higgins J.P.T.
        • Wells G.A.
        Including non-randomised studies.
        in: Higgins J.P.T. Green S. Cochrane handbook for systematic reviews of interventions. John Wiley & Sons, Chichester, West Sussex2008
        • Boland A.
        • Cherry M.G.
        • Dickson R.
        Doing a systematic review: a student's guide.
        2nd ed. SAGE Publications, London2017
        • Odamaki T.
        • Kato K.
        • Sugahara H.
        • Hashikura N.
        • Takahashi S.
        • Xiao J.-Z.
        • et al.
        Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study.
        BMC Microbiol. 2016; 16: 90
        • Rigsbee L.
        • Agans R.
        • Paliy O.
        • Kenche H.
        • Michail S.
        • Khamis H.J.
        Distal gut microbiota of adolescent children is different from that of adults.
        FEMS Microbiol Ecol. 2011; 77: 404-412
        • Ringel-Kulka T.
        • Cheng J.
        • Ringel Y.
        • Salojärvi J.
        • Carroll I.
        • Palva A.
        • et al.
        Intestinal microbiota in healthy U.S. young children and adults—a high throughput microarray analysis.
        PLoS One. 2013; 8e64315
        • Allegretti J.R.
        • Kao D.
        • Sitko J.
        • Fischer M.
        • Kassam Z.
        Early antibiotic use after fecal microbiota transplantation increases risk of treatment failure.
        Clin Infect Dis. 2018; 66: 134-135
        • CDC
        Antibiotic resistance threats in the United States.
        2013
        • Young V.B.
        • Hayden M.K.
        Environmental management in the gut: fecal transplantation to restore the intestinal ecosystem.
        Infect Dis. 2016; 48: 593-595
        • Bar-Yoseph H.
        • Hussein K.
        • Braun E.
        • Paul M.
        Natural history and decolonization strategies for ESBL/carbapenem-resistant Enterobacteriaceae carriage: systematic review and meta-analysis.
        J Antimicrob Chemother. 2016; 71: 2729-2739
        • Bilinski J.
        • Grzesiowski P.
        • Sorensen N.
        • Madry K.
        • Muszynski J.
        • Robak K.
        • et al.
        Fecal microbiota transplantation in patients with blood disorders inhibits gut colonization with antibiotic-resistant bacteria: results of a prospective, single-center study.
        Clin Infect Dis. 2017; 65: 364-370
        • Singh R.
        • de Groot P.F.
        • Geerlings S.E.
        • Hodiamont C.J.
        • Belzer C.
        • Berge I.
        • et al.
        Fecal microbiota transplantation against intestinal colonization by extended spectrum beta-lactamase producing Enterobacteriaceae: a proof of principle study.
        BMC Res Notes. 2018; 11: 190
        • Aveyard H.
        • Payne S.
        • Preston N.
        A post-graduate's guide to doing a literature review in health and social care.
        Open University Press, McGraw Hill Education, Maidenhead, Berkshire2016
        • Dinh A.
        • Fessi H.
        • Duran C.
        • Batista R.
        • Michelon H.
        • Bouchand F.
        • et al.
        Clearance of carbapenem-resistant Enterobacteriaceae vs vancomycin-resistant enterococci carriage after faecal microbiota transplant: a prospective comparative study.
        J Hosp Infect. 2018; 99: 481-486
        • Lahtinen P.
        • Mattila E.
        • Anttila V.J.
        • Tillonen J.
        • Teittinen M.
        • Nevalainen P.
        • et al.
        Faecal microbiota transplantation in patients with Clostridium difficile and significant comorbidities as well as in patients with new indications: A case series.
        World J Gastroenterol. 2017; 23: 7174-7184
        • Sohn K.M.
        • Cheon S.
        • Kim Y.S.
        Can fecal microbiota transplantation (FMT) eradicate fecal colonization with vancomycin-resistant Enterococci (VRE)?.
        Infect Control Hosp Epidemiol. 2016; 37: 1519-1521
        • Sterne J.A.C.
        • Hernán M.A.
        • Reeves B.C.
        • Savović J.
        • Berkman N.D.
        • Viswanathan M.
        • et al.
        ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions.
        BMJ. 2016; 355: i4919
        • Moola S.
        • Munn Z.
        • Tufanaru C.
        • Aromataris E.
        • Sears K.
        • Sfetcu R.
        • et al.
        Chapter 7: Systematic reviews of etiology and risk.
        in: Aromataris E. Munn Z. Joanna Briggs institute reviewer's manual. The Joanna Briggs Institute, 2017
        • Aromataris E.
        • Munn Z.
        Joanna Briggs institute reviewer's manual.
        2017 ([last accessed June 2018])
        • Higgins J.P.T.
        • Altman D.G.
        Assessing risk of bias in included studies.
        in: Higgins J.P.T. Green S. Cochrane handbook for systematic reviews. John Wiley & Sons, Chichester, West Sussex2008
        • Agha R.A.
        • Fowler A.J.
        • Rajmohan S.
        • Barai I.
        • Orgill D.P.
        • Afifi R.
        • et al.
        Preferred reporting of case series in surgery; the PROCESS guidelines.
        Int J Surg. 2016; 36: 319-323
        • Gagnier J.J.
        • Kienle G.
        • Altman D.G.
        • Moher D.
        • Sox H.
        • Riley D.
        • et al.
        The CARE Guidelines: consensus-based clinical case reporting guideline development.
        Glob Adv Health Med. 2013; 2: 38-43
        • Balshem H.
        • Helfand M.
        • Schunemann H.J.
        • Oxman A.D.
        • Kunz R.
        • Brozek J.
        • et al.
        GRADE guidelines: 3. Rating the quality of evidence.
        J Clin Epidemiol. 2011; 64: 401-406
        • Deeks J.J.
        • Higgins J.P.T.
        • Altman D.G.
        Analysing data and undertaking meta-analyses.
        in: Higgins J.P.T. Green S. Cochrane handbook for systematic reviews of interventions. John Wiley & Sons, Chichester, West Sussex2008
        • DerSimonian R.
        • Laird N.
        Meta-analysis in clinical trials.
        Control Clin Trials. 1986; 7: 177-188
        • El Dib R.
        • Nascimento Junior P.
        • Kapoor A.
        An alternative approach to deal with the absence of clinical trials: a proportional meta-analysis of case series studies.
        Acta Cir Bras. 2013; 28: 870-876
        • Murad M.H.
        • Sultan S.
        • Haffar S.
        • Bazerbachi F.
        Methodological quality and synthesis of case series and case reports.
        BMJ Evid Based Med. 2018; 23: 60-63
        • Singh R.
        • van Nood E.
        • Nieuwdorp M.
        • van Dam B.
        • ten Berge I.J.M.
        • Geerlings S.E.
        • et al.
        Donor feces infusion for eradication of Extended Spectrum beta-Lactamase producing Escherichia coli in a patient with end stage renal disease.
        Clin Microbiol Infect. 2014; 20: O977-O978
        • Stalenhoef J.E.
        • Terveer E.M.
        • Knetsch C.W.
        • Van't Hof P.J.
        • Vlasveld I.N.
        • Keller J.J.
        • et al.
        Fecal microbiota transfer for multidrug-resistant gram-negatives: a clinical success combined with microbiological failure.
        Open Forum Infect Dis. 2017; 4: ofx047
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        • The P.G.
        Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement.
        PLoS Med. 2009; 6e1000097
        • Chan K.
        • Bhandari M.
        Three-minute critical appraisal of a case series article.
        Indian J Orthop. 2011; 45: 103-104
        • Guillemin F.
        Primer: the fallacy of subgroup analysis.
        Nat Clin Pract Rheumatol. 2007; 3: 407-413
        • Sayre J.W.
        • Toklu H.Z.
        • Ye F.
        • Mazza J.
        • Yale S.
        Case reports, case series – from clinical practice to evidence-based medicine in graduate medical education.
        Cureus. 2017; 9: e1546
        • Drekonja D.
        • Reich J.
        • Gezahegn S.
        • Greer N.
        • Shaukat A.
        • MacDonald R.
        • et al.
        Fecal microbiota transplantation for Clostridium difficile infection: a systematic review.
        Ann Intern Med. 2015; 162: 630-638
        • Gough E.
        • Shaikh H.
        • Manges A.R.
        Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection.
        Clin Infect Dis. 2011; 53: 994-1002
        • Iqbal U.
        • Anwar H.
        • Karim M.A.
        Safety and efficacy of encapsulated fecal microbiota transplantation for recurrent Clostridium difficile infection: a systematic review.
        Eur J Gastroenterol Hepatol. 2018; 30: 730-734
        • Bulow C.
        • Langdon A.
        • Hink T.
        • Wallace M.
        • Reske K.A.
        • Patel S.
        • et al.
        Impact of amoxicillin-clavulanate followed by autologous fecal microbiota transplantation on fecal microbiome structure and metabolic potential.
        mSphere. 2018; 3 (e00588-18)
        • O'Fallon E.
        • Gautam S.
        • D'Agata E.M.
        Colonization with multidrug-resistant gram-negative bacteria: prolonged duration and frequent cocolonization.
        Clin Infect Dis. 2009; 48: 1375-1381
        • Haverkate M.R.
        • Derde L.P.G.
        • Brun-Buisson C.
        • Bonten M.J.M.
        • Bootsma M.C.J.
        Duration of colonization with antimicrobial-resistant bacteria after ICU discharge.
        Intensive Care Med. 2014; 40: 564-571
        • Hayden M.K.
        • Lin M.Y.
        • Lolans K.
        • Weiner S.
        • Blom D.
        • Moore N.M.
        • et al.
        Prevention of colonization and infection by Klebsiella pneumoniae carbapenemase-producing enterobacteriaceae in long-term acute-care hospitals.
        Clin Infect Dis. 2015; 60: 1153-1161
        • Haverkate M.R.
        • Weiner S.
        • Lolans K.
        • Moore N.M.
        • Weinstein R.A.
        • Bonten M.J.M.
        • et al.
        Duration of colonization with Klebsiella pneumoniae carbapenemase-producing bacteria at long-term acute care hospitals in Chicago, Illinois.
        Open Forum Infect Dis. 2016; 3: ofw178
        • Rieg S.
        • Küpper M.F.
        • de With K.
        • Serr A.
        • Bohnert J.A.
        • Kern W.V.
        Intestinal decolonization of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBL): a retrospective observational study in patients at risk for infection and a brief review of the literature.
        BMC Infect Dis. 2015; 15: 475
        • Huttner B.
        • Haustein T.
        • Uçkay I.
        • Renzi G.
        • Stewardson A.
        • Schaerrer D.
        • et al.
        Decolonization of intestinal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae with oral colistin and neomycin: a randomized, double-blind, placebo-controlled trial.
        J Antimicrob Chemother. 2013; 68: 2375-2382
        • Saidel-Odes L.
        • Polachek H.
        • Peled N.
        • Riesenberg K.
        • Schlaeffer F.
        • Trabelsi Y.
        • et al.
        A randomized, double-blind, placebo-controlled trial of selective digestive decontamination using oral gentamicin and oral polymyxin E for eradication of carbapenem-resistant Klebsiella pneumoniae carriage.
        Infect Control Hosp Epidemiol. 2012; 33: 14-19
        • Halaby T.
        • Al Naiemi N.
        • Kluytmans J.
        • van der Palen J.
        • Vandenbroucke-Grauls C.M.
        Emergence of colistin resistance in Entero-bac-teri-aceae after the introduction of selective digestive tract decontamination in an intensive care unit.
        Antimicrob Agents Chemother. 2013; 57: 3224-3229
        • Buelow E.
        • Gonzalez T.B.
        • Versluis D.
        • Oostdijk E.A.
        • Ogilvie L.A.
        • van Mourik M.S.
        • et al.
        Effects of selective digestive decontamination (SDD) on the gut resistome.
        J Antimicrob Chemother. 2014; 69: 2215-2223
        • Cave L.
        • Brothier E.
        • Abrouk D.
        • Bouda P.S.
        • Hien E.
        • Nazaret S.
        Efficiency and sensitivity of the digital droplet PCR for the quantification of antibiotic resistance genes in soils and organic residues.
        Appl Microbiol Biotechnol. 2016; 100: 10597-10608
        • Colinon C.
        • Deredjian A.
        • Hien E.
        • Brothier E.
        • Bouziri L.
        • Cournoyer B.
        • et al.
        Detection and enumeration of Pseudomonas aeruginosa in soil and manure assessed by an ecfX qPCR assay.
        J Appl Microbiol. 2013; 114: 1734-1749
        • Tseng C.-P.
        • Cheng J.-C.
        • Tseng C.-C.
        • Wang C.
        • Chen Y.-L.
        • Chiu D.T.-Y.
        • et al.
        Broad-range ribosomal RNA real-time PCR after removal of DNA from reagents: melting profiles for clinically important bacteria.
        Clin Chem. 2003; 49: 306
        • Bilinski J.
        • Grzesiowski P.
        • Muszynski J.
        • Wroblewska M.
        • Madry K.
        • Robak K.
        • et al.
        Fecal microbiota transplantation inhibits multidrug-resistant gut pathogens: preliminary report performed in an immunocompromised host.
        Arch Immunol Ther Exp. 2016; 64: 255-258
        • Jouhten H.
        • Mattila E.
        • Arkkila P.
        • Satokari R.
        Reduction of antibiotic resistance genes in intestinal microbiota of patients with recurrent Clostridium difficile infection after fecal microbiota transplantation.
        Clin Infect Dis. 2016; 63: 710-711
        • Millan B.
        • Park H.
        • Hotte N.
        • Mathieu O.
        • Burguiere P.
        • Tompkins T.A.
        • et al.
        Fecal microbial transplants reduce antibiotic-resistant genes in patients with recurrent Clostridium difficile infection.
        Clin Infect Dis. 2016; 62: 1479-1486
        • Casals-Pascual C.
        • Vergara A.
        • Vila J.
        Intestinal microbiota and antibiotic resistance: Perspectives and solutions.
        Hum Microbiome J. 2018; 9: 11-15
        • Ott S.J.
        • Waetzig G.H.
        • Rehman A.
        • Moltzau-Anderson J.
        • Bharti R.
        • Grasis J.A.
        • et al.
        Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection.
        Gastroenterology. 2017; 152: 799-811.e7
        • Li S.S.
        • Zhu A.
        • Benes V.
        • Costea P.I.
        • Hercog R.
        • Hildebrand F.
        • et al.
        Durable coexistence of donor and recipient strains after fecal microbiota transplantation.
        Science. 2016; 352: 586-589
        • Mahieu R.
        • Cassisa V.
        • Hilliquin D.
        • Coron N.
        • Pailhoriès H.
        • Kempf M.
        • et al.
        Impact of faecal microbiota transplantation on mouse digestive colonization with two extensively resistant bacteria.
        J Infect. 2017; 75: 75-77
        • Jang M.O.
        • An J.H.
        • Jung S.I.
        • Park K.H.
        Refractory Clostridium difficile infection cured with fecal microbiota transplantation in a vancomycin-resistant Enterococcus colonized patient.
        Intest Res. 2015; 13: 80-84
        • Mahieu R.
        • Cassisa V.
        • Godefroy A.
        • Joly-Guillou M.L.
        • Eveillard M.
        Effect of faecal microbiota transplantation on mouse gut colonization with carbapenemase-producing Escherichia coli.
        J Antimicrob Chemother. 2017; 72: 1260-1262
        • Patel R.
        • Allen S.L.
        • Manahan J.M.
        • Wright A.J.
        • Krom R.A.
        • Wiesner R.H.
        • et al.
        Natural history of vancomycin-resistant enterococcal colonization in liver and kidney transplant recipients.
        Liver Transpl. 2001; 7: 27-31
        • Zimmerman F.S.
        • Assous M.V.
        • Bdolah-Abram T.
        • Lachish T.
        • Yinnon A.M.
        • Wiener-Well Y.
        Duration of carriage of carbapenem-resistant Enterobacteriaceae following hospital discharge.
        Am J Infect Control. 2013; 41: 190-194
        • Leung V.
        • Vincent C.
        • Edens T.J.
        • Miller M.
        • Manges A.R.
        Antimicrobial resistance gene acquisition and depletion following fecal microbiota transplantation for recurrent Clostridium difficile infection.
        Clin Infect Dis. 2018; 66: 456-459
        • Sterne J.A.C.
        • Egger M.
        • Moher D.
        Addressing reporting biases.
        in: Higgins J.P.T. Green S. Cochrane handbook for systematic reviews of interventions. John Wiley & Sons, Chichester, West Sussex2008
        • Freedman A.
        • Eppes S.
        1805 Use of Stool Transplant to Clear Fecal Colonization with Carbapenem-Resistant Enterobacteraciae (CRE): Proof of Concept.
        Open Forum Infect Dis. 2014; 1: S65
        • Button K.S.
        • Ioannidis J.P.A.
        • Mokrysz C.
        • Nosek B.A.
        • Flint J.
        • Robinson E.S.J.
        • et al.
        Power failure: why small sample size undermines the reliability of neuroscience.
        Nat Rev Neurosci. 2013; 14: 365
        • Evans S.R.
        Clinical trial structures.
        Exp Stroke Transl Med. 2010; 3: 8-18