Advertisement

Effects of a disinfection device on colonization of sink drains and patients during a prolonged outbreak of multidrug-resistant Pseudomonas aeruginosa in an intensive care unit

Published:January 09, 2019DOI:https://doi.org/10.1016/j.jhin.2019.01.003

      Summary

      Background

      Sink drains in intensive care units (ICUs) are frequently colonized with bacteria such as Pseudomonas aeruginosa.

      Aim

      To study the influence of installing disinfecting devices on sink drains on colonization of sinks and patients in an ICU during a prolonged outbreak of multidrug-resistant P. aeruginosa.

      Methods

      From 2010, there was a clonal outbreak of multidrug-resistant P. aeruginosa (MDR-PA). In April 2013, in ICU subunit A, the siphons draining these sinks were replaced by devices applying heat and electromechanical vibration to disinfect the draining fluid. In the other units, siphons were replaced by new polyvinyl chloride plastic siphons (control). In February 2016 the disinfecting devices were also placed at ICU subunit B.

      Findings

      Baseline colonization rate of sinks was 51% in ICU A and 46% in ICU B. In ICU A colonization decreased to 5% (P < 0.001) after the intervention whereas it was 62% in ICU B (control). After installing the disinfection devices in ICU B, colonization rate was 8.0 and 2.4% in ICU A and B, respectively (both P < 0.001 compared with baseline). Colonization in ICU patients decreased from 8.3 to 0 per 1000 admitted patients (P < 0.001) and from 2.7 to 0.5 per 1000 admitted patients (P = 0.1) in ICU A and B respectively.

      Conclusion

      Colonization with MDR-PA in sink drains in an ICU was effectively managed by installing disinfection devices to the siphons of sinks. Colonization of patients was also significantly reduced, suggesting that sink drains can be a source of clinical outbreaks with P. aeruginosa and that disinfecting devices may help to interrupt these outbreaks.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hospital Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Vincent J.L.
        • Rello J.
        • Marshall J.
        • Silva E.
        • Anzueto A.
        • Martin C.D.
        • et al.
        International study of the prevalence and outcomes of infection in intensive care units.
        JAMA. 2009; 302: 2323-2329
        • Kramer A.
        • Schwebke I.
        • Kampf G.
        How long do nosocomial pathogens persist on inanimate surfaces? A systematic review.
        BMC Infect Dis. 2006; 6: 130
        • Grundmann H.
        • Kropec A.
        • Hartung D.
        • Berner R.
        • Daschner F.
        Pseudomonas aeruginosa in a neonatal intensive care unit: reservoirs and ecology of the nosocomial pathogen.
        J Infect Dis. 1993; 168: 943-947
        • Cohen R.
        • Babushkin F.
        • Shimoni Z.
        • Cohen S.
        • Litig E.
        • Shapiro M.
        • et al.
        Water faucets as a source of Pseudomonas aeruginosa infection and colonization in neonatal and adult intensive care unit patients.
        Am J Infect Control. 2017; 45: 206-209
        • Garvey M.I.
        • Bradley C.W.
        • Tracey J.
        • Oppenheim B.
        Continued transmission of Pseudomonas aeruginosa from a wash hand basin tap in a critical care unit.
        J Hosp Infect. 2016; 94: 8-12
        • Venier A.G.
        • Leroyer C.
        • Slekovec C.
        • Talon D.
        • Bertrand X.
        • Parer S.
        • et al.
        Risk factors for Pseudomonas aeruginosa acquisition in intensive care units: a prospective multicentre study.
        J Hosp Infect. 2014; 88: 103-108
        • Perryman F.A.
        • Flournoy D.J.
        Prevalence of gentamicin- and amikacin-resistant bacteria in sink drains.
        J Clin Microbiol. 1980; 12: 79-83
        • De Geyter D.
        • Blommaert L.
        • Verbraeken N.
        • Sevenois M.
        • Huyghens L.
        • Martini H.
        • et al.
        The sink as a potential source of transmission of carbapenemase-producing Enterobacteriaceae in the intensive care unit.
        Antimicrob Resist Infect Control. 2017; 6: 24
        • Roux D.
        • Aubier B.
        • Cochard H.
        • Quentin R.
        • van der Mee-Marquet N.
        Contaminated sinks in intensive care units: an underestimated source of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the patient environment.
        J Hosp Infect. 2013; 85: 106-111
        • Hota S.
        • Hirji Z.
        • Stockton K.
        • Lemieux C.
        • Dedier H.
        • Wolfaardt G.
        • et al.
        Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design.
        Infect Control Hosp Epidemiol. 2009; 30: 25-33
        • Knoester M.
        • de Boer M.G.
        • Maarleveld J.J.
        • Claas E.C.
        • Bernards A.T.
        • de Jonge E.
        • et al.
        An integrated approach to control a prolonged outbreak of multidrug-resistant Pseudomonas aeruginosa in an intensive care unit.
        Clin Microbiol Infect. 2014; 20: O207-O215
        • de Jonge E.
        • Schultz M.J.
        • Spanjaard L.
        • Bossuyt P.M.
        • Vroom M.B.
        • Dankert J.
        • et al.
        Effects of selective decontamination of digestive tract on mortality and acquisition of resistant bacteria in intensive care: a randomised controlled trial.
        Lancet. 2003; 362: 1011-1016
        • Rai H.
        • Knighton S.
        • Zabarsky T.F.
        • Donskey C.J.
        A randomized trial to determine the impact of a 5 moments for patient hand hygiene educational intervention on patient hand hygiene.
        Am J Infect Control. 2017; 45: 551-553
        • Wolf I.
        • Bergervoet P.W.
        • Sebens F.W.
        • van den Oever H.L.
        • Savelkoul P.H.
        • van der Zwet W.C.
        The sink as a correctable source of extended-spectrum beta-lactamase contamination for patients in the intensive care unit.
        J Hosp Infect. 2014; 87: 126-130
        • Fusch C.
        • Pogorzelski D.
        • Main C.
        • Meyer C.L.
        • El Helou S.
        • Mertz D.
        Self-disinfecting sink drains reduce the Pseudomonas aeruginosa bioburden in a neonatal intensive care unit.
        Acta Paediatr. 2015; 104: e344-e349
        • Hopman J.
        • Tostmann A.
        • Wertheim H.
        • Bos M.
        • Kolwijck E.
        • Akkermans R.
        • et al.
        Reduced rate of intensive care unit acquired gram-negative bacilli after removal of sinks and introduction of ‘water-free’ patient care.
        Antimicrob Resist Infect Control. 2017; 6: 59
        • Rogues A.M.
        • Boulestreau H.
        • Lasheras A.
        • Boyer A.
        • Gruson D.
        • Merle C.
        • et al.
        Contribution of tap water to patient colonisation with Pseudomonas aeruginosa in a medical intensive care unit.
        J Hosp Infect. 2007; 67: 72-78